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——————–

Olivier Debarre

February 28, 2016





Contents

1 Divisors 3

1.1 Weil and Cartier divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Invertible sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Intersection of curves and divisors . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Line bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Linear systems and morphisms to projective spaces . . . . . . . . . . . . . . 10

1.6 Globally generated sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.7 Ample divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.8 Ample divisors on curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.9 Nef divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.10 Cones of divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.11 The canonical divisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Riemann–Roch theorems 23

2.1 Intersecting two curves on a surface . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 General intersection numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Intersection of divisors over the complex numbers . . . . . . . . . . . . . . . 27

2.4 Asymptotic numbers of sections . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Kodaira dimension and Iitaka fibrations . . . . . . . . . . . . . . . . . . . . . 29

3 Rational curves on varieties 33

3.1 Parametrizing curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Free rational curves and uniruled varieties . . . . . . . . . . . . . . . . . . . 35

3.3 Bend-and-break lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38



3.4 Rational curves on Fano varieties . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 Rational curves on varieties with non-nef canonical divisor . . . . . . . . . . 41

4 The cone theorem 45

4.1 Cone of curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Mori’s Cone Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Contractions of KX-negative extremal rays . . . . . . . . . . . . . . . . . . . 48

4.4 Various types of contractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.5 Fiber-type contractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.6 Divisorial contractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.7 Small contractions and flips . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.8 The minimal model program . . . . . . . . . . . . . . . . . . . . . . . . . . . 56



Abstract

The aim of this course is to provide an introduction to Mori’s Minimal Model Program
(MMP) on smooth projective varieties. We review classical results on Weil and Cartier
divisors and define ample and nef divisors. We explain how an asymptotic Riemann–Roch
theorem gives a general definition for the intersection of Cartier divisors. We also go through
the construction of the moduli space of morphisms from a fixed curve to a fixed smooth
variety, define free curves and uniruled varieties, and state Mori’s bend-and-break lemmas.
We finish with a proof of Mori’s cone theorem for smooth projective varieties and explain
the basic steps of the MMP.
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Introduction

Mori’s Minimal Model Program is a classification program: given a (smooth) projective
variety X, the aim is to find a “simple” birational model of X, ideally one whose canonical
bundle is nef (although this is not possible for varieties covered by rational curves). Mori’s
original approach gave a prominent role to rational curves. Although it is not sufficient to
complete his program (essentially because it cannot deal with the necessary evil of singular
varieties), it contains beautiful geometric results which have their own interest and which
are also much more accessible than the latest developments of the MMP.

Assuming that the reader is familiar with the basics of algebraic geometry (e.g., the
contents of the book [H]), we present in these notes the necessary material (and a bit more)
to understand Mori’s cone theorem.

In Chapter 1, we review Weil and Cartier divisors and linear equivalence (this is covered
in [H]). We explain the relation between Cartier divisors and invertible sheaves and define
the Picard group. We define the intersection number between a Cartier divisor and a curve.
This is a fundamental tool: it defines numerical equivalence, an equivalence relation on the
group of Cartier divisors weaker than linear equivalence. The quotient space, the Néron–
Severi group, is therefore a quotient of the Picard group and, for proper varieties, it is free
abelian of finite rank.

We explain the standard relation between linear systems and rational maps to projec-
tive spaces (also covered in [H]). We also explain global generation of coherent sheaves and
define ample (Q)-Cartier divisors on a scheme of finite type over a field. We prove Serre’s
theorems.

After proving a Riemann–Roch theorem on a smooth projective curve, we prove that
ample divisors on a smooth projective curve are those of positive degree. Finally, we define,
on any projective scheme, nef divisors as those having non-negative intersection number with
any curve. We then define, in the Néron–Severi (finite-dimensional real) vector space, the
ample, nef, big, effective, and pseudo-effective cones. In order to shorten the exposition, we
accept without proof that the sum of an ample divisor and a nef divisor is still ample. This
is not very satisfactory since this result is usually obtained as a consequence of the material
in the next chapter, but I did not have time to follow the standard (and logical) path.

Chapter 2 is devoted to asymptotic Riemann–Roch theorems: given a Cartier divisor
D on a projective scheme X of dimension n, how fast does the dimension h0(X,mD) of
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the space of sections of its positive multiples mD grow? It is easier to deal with the Euler
characteristic χ(X,mD) instead, which grows like amn/n!+lower order terms, where a is an
integer which is by definition the self-intersection product (Dn). This is a fast way to define
this product, and more generally the intersection product of n Cartier divisors D1, . . . , Dn

on X. This product turns out to count, when these divisors are effective and meet in only
finitely many points, these intersection points with multiplicities. When D is nef, this is also
the behavior of h0(X,mD). We end this chapter by defining and discussing the Kodaira
dimension of a Cartier divisor. We define algebraic fibrations and explain what the Iitaka
fibration is.

In Chapter 3, we discuss the moduli space of morphisms from a fixed (smooth pro-
jective) curve and a projective variety and construct it when the curve is P1. We explain
without proof his local structure. We discuss free rational curves and uniruled varieties (i.e.,
varieties covered by rational curves). We state (without proof) Mori’s bend-and-break lem-
mas and explain in more details Mori’s beautiful proof of the fact that Fano varieties are
uniruled (the nice part is the reduction to positive characteristics). In the last section, we
explain an extension, based on a classical result of Miyaoka and Mori, of Mori’s result to
varieties with nef but not numerically trivial anticanonical class.

The fourth and last chapter is devoted to the proof of the cone theorem and its var-
ious consequences. The cone theorem describes the structure of the closed convex cone
spanned by classes of irreducible curves (the “Mori cone”) in the dual of the Néron–Severi
(finite-dimensional real) vector space of a smooth projective variety X. It is an elementary
consequence of the Miyaoka–Mori theorem mentioned above and uses only elementary geo-
metrical facts on the geometry of closed convex cones in finite-dimensional real vector spaces.
We state without proof Kawamata’s base-point-free theorem and explain how it allows us
to construct, in characteristic 0, contractions of some extremal rays of the Mori cone: these
are algebraic fibrations c from X to a projective variety which contract exactly the curves
whose class is in the ray.

These fibrations are of 3 types: fiber-type (when all fibers of c have positive dimen-
sions), divisorial (when c is birational with exceptional locus a divisor), small (when c is
birational with exceptional locus of codimension ≥ 2). We remark that the image c(X) of
the contraction may be singular, but not too singular, except in the case of a small contrac-
tion. We end these notes with a one-page description of what the MMP is about and explain
what the main problems are.

We prove some, but far from all, the results we state. The bibliography provides a
few references where the reader can find more detailed expositions. There are also a few
exercises throughout this text.
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Chapter 1

Divisors

In this chapter and the rest of these notes, k is a field and a k-variety is an integral scheme
of finite type over k.

1.1 Weil and Cartier divisors

In this section, X is a scheme which is for simplicity assumed to be integral.1

A Weil divisor on X is a (finite) formal linear combination with integral coefficients
of integral hypersurfaces in X. Its support is the union of the hypersurfaces which appear
with non-zero coefficients. We say that the divisor is effective if the coefficients are all
non-negative.

Assume moreover that X is normal. For each integral hypersurface Y of X with generic
point η, the integral local ring OX,η has dimension 1 and is regular, hence is a discrete
valuation ring with valuation vY . For any non-zero rational function f on X, the integer
vY (f) (valuation of f along Y ) is the order of vanishing of f along Y if it is non-negative,
and the opposite of the order of the pole of f along Y otherwise. We define the divisor of f
as

div(f) =
∑
Y

vY (f)Y.

The rational function f is regular if and only if its divisor is effective ([H, Proposition
II.6.3A]).

1.1. Linearly equivalent Weil divisors. Two Weil divisors D and D′ on the normal
scheme X are linearly equivalent if their difference is the divisor of a non-zero rational
function on X; we write D ≡

lin
D′. Linear equivalence classes of Weil divisors form a group

Cl(X) (the divisor class group) for the addition of divisors.

1The definitions can be given for any scheme, but they take a slightly more complicated form.
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A Cartier divisor is a divisor which can be locally written as the divisor of a non-zero
rational function. The formal definition is less enlightening.

Definition 1.2 (Cartier divisors.) A Cartier divisor on an integral scheme X is a global
section of the sheaf K(X)×/O×X , where K(X) is the constant sheaf of rational functions on
X.

In other words, a Cartier divisor is given by a collection of pairs (Ui, fi), where (Ui) is
an affine open cover of X and fi is a non-zero rational function on Ui such that fi/fj is a
regular function on Ui ∩ Uj that does not vanish.

A Cartier divisor on X is principal if it can be defined by a global non-zero rational
function on the whole of X.

1.3. Associated Weil divisor. Assume that X is normal. Given a Cartier divisor on
X, defined by a collection (Ui, fi), one can consider the associated Weil divisor

∑
Y nY Y on

X, where the integer nY is the valuation of fi along Y ∩ Ui for any i such that Y ∩ Ui is
nonempty (it does not depend on the choice of such an i).

A Weil divisor which is linearly equivalent to a Cartier divisor is itself a Cartier divisor.

When X is locally factorial (e.g., a smooth variety), i.e., its local rings are unique
factorization domains, any hypersurface can be defined locally by one (regular) equation
([H, Proposition II.6.11]),2 hence any divisor is locally the divisor of a rational function. In
other words, there is no distinction between Cartier divisors and Weil divisors.

1.4. Effective Cartier divisors. A Cartier divisor D is effective if it can be defined by a
collection (Ui, fi), where fi is in OX(Ui). We write D ≥ 0. When D is not zero, it defines a
subscheme of codimension 1 by the “equation” fi on each Ui. We still denote it by D.

1.5. Q-divisors. A Weil Q-divisor on a scheme X is a (finite) formal linear combination
with rational coefficients of integral hypersurfaces in X. On a normal scheme X, one says
that a Q-divisor is Q-Cartier if some multiple with integral coefficients is a Cartier divisor.

Example 1.6 Let X be the quadric cone defined in A3
k by the equation xy = z2. It is

integral and normal. The line L defined by x = z = 0 is contained in X; it defines a Weil
divisor on X which cannot be defined near the origin by one equation (the ideal (x, z) is not
principal in the local ring of X at the origin). It is therefore not a Cartier divisor. However,
2L is a principal Cartier divisor, defined by the regular function x, hence L is a Q-Cartier
divisor. Similarly, the sum of L with the line defined by y = z = 0 is also a principal Cartier
divisor, defined by the regular function z. So the “components” of a Cartier divisor need
not be Cartier.

2This is because in a unique factorization domain, prime ideals of height 1 are principal.
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1.2 Invertible sheaves

Definition 1.7 (Invertible sheaves) An invertible sheaf on a scheme X is a locally free
OX-module of rank 1.

The terminology comes from the fact that the tensor product defines a group structure
on the set of locally free sheaves of rank 1 on X, where the inverse of an invertible sheaf L
is H om(L ,OX). This makes the set of isomorphism classes of invertible sheaves on X into
an abelian group called the Picard group of X, and denoted by Pic(X). For any m ∈ Z, it is
traditional to write L m for the mth (tensor) power of L (so in particular, L −1 is the dual
of L ).

Let L be an invertible sheaf on X. We can cover X with affine open subsets Ui on
which L is trivial and we obtain changes of trivializations, or transition functions

gij ∈ O×X(Ui ∩ Uj). (1.1)

They satisfy the cocycle condition
gijgjkgki = 1

hence define a Čech 1-cocycle for O×X . One checks that this induces an isomorphism

Pic(X) ' H1(X,O×X). (1.2)

For any m ∈ Z, the invertible sheaf L m corresponds to the collection of transition functions
(gmij )i,j.

1.8. Invertible sheaf associated with a Cartier divisor. Given a Cartier divisor D on
an integral scheme X, given by a collection (Ui, fi), one can construct an invertible subsheaf
OX(D) of K(X) by taking the sub-OX-module generated by 1/fi on Ui. We have

OX(D1)⊗ OX(D2) ' OX(D1 +D2).

Every invertible subsheaf ofK(X) is obtained in this way and two Cartier divisors are linearly
equivalent if and only if their associated invertible sheaves are isomorphic ([H, Proposition
II.6.13]). Since X is integral, every invertible sheaf is a subsheaf of K(X) ([H, Remark
II.6.14.1 and Proposition II.6.15]), so we get an isomorphism of groups

{Cartier divisors on X, +}
/
≡
lin
' {Invertible sheaves on X, ⊗}

/
isom. = Pic(X).

In some sense, Cartier divisors and invertible sheaves are more or less the same thing.
However, we will try to use as often as possible the (additive) language of divisors instead
of that of invertible sheaves; this allows for example for Q-divisors (which have no analogs
in terms of sheaves).

We will write H i(X,D) instead of H i(X,OX(D)) and, if F is a coherent sheaf on X,
F (D) instead of F ⊗OX

OX(D).
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Assume that X is moreover normal. One has

H0(X,OX(D)) ' {f ∈ K(X) | f = 0 or div(f) +D ≥ 0}. (1.3)

Indeed, if (Ui, fi) represents D, and f is a non-zero rational function on X such that div(f)+
D is effective, ffi is regular on Ui (because X is normal!), and f |Ui

= (ffi)
1
fi

defines a section

of OX(D) over Ui. Conversely, any global section of OX(D) is a rational function f on X
such that, on each Ui, the product f |Ui

fi is regular. Hence div(f) +D effective.

Remark 1.9 Let D be a non-zero effective Cartier divisor on X. If we still denote by D
the subscheme of X that it defines (see 1.4), we have an exact sequence of sheaves3

0→ OX(−D)→ OX → OD → 0.

Remark 1.10 Going back to Definition 1.2 of Cartier divisors, one checks that the mor-
phism

H0(X,K(X)×/O×X) −→ H1(X,O×X)

D 7−→ [OX(D)]

induced by (1.2) is the coboundary of the long exact sequence in cohomology induced the
short exact sequence

0→ O×X → K(X)× → K(X)×/O×X → 0.

Principal divisors correspond to the image of K(X)× in H0(X,K(X)×/O×X).

Example 1.11 An integral hypersurface Y in Pn
k corresponds to a prime ideal of height 1

in k[x0, . . . , xn], which is therefore (since the ring k[x0, . . . , xn] is factorial) principal. Hence
Y is defined by one (homogeneous) irreducible equation f of degree d (called the degree of
Y ). This defines a surjective morphism

{Cartier divisors on Pn
k} → Z.

Since f/xd0 is a rational function on Pn
k with divisor Y − dH0 (where H0 is the hyperplane

defined by x0 = 0), Y is linearly equivalent to dH0. Conversely, the divisor of any rational
function on Pn

k has degree 0 (because it is the quotient of two homogeneous polynomials of
the same degree), hence we obtain an isomorphism

Pic(Pn
k) ' Z.

We denote by OPn
k
(d) the invertible sheaf corresponding to an integer d (it is OPn

k
(D) for any

divisor D of degree d). One checks that the space of global sections of OPn
k
(d) is 0 for d < 0

and isomorphic to the vector space of homogeneous polynomials of degree d in k[x0, . . . , xn]
for d ≥ 0. More intrinsically, for any finite dimensional k-vector space W , one has

H0(P(W ),OP(W )(d)) =

{
SymdW∨ if d ≥ 0,

0 if d < 0.

3Let i be the inclusion of D in X. Since this is an exact sequence of sheaves on X, the sheaf on the right
should be i∗OD (a sheaf on X with support on D). However, it is customary to drop i∗. Note that as far as
cohomology calculations are concerned, this does not make any difference ([H, Lemma III.2.10]).
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Exercise 1.12 Let X be a normal integral scheme. Prove

Pic(X ×Pn
k) ' Pic(X)× Z.

(Hint: proceed as in [H, Proposition II.6.6 and Example II.6.6.1]). In particular,

Pic(Pm
k ×Pn

k) ' Z× Z.

This can be seen directly as in Example 1.11 by proving first that any hypersurface in
Pm

k ×Pn
k is defined by a bihomogeneous polynomial in ((x0, . . . , xm), (y0, . . . , yn)).

1.13. Pullback. Let π : Y → X be a morphism between integral schemes and let D be a
Cartier divisor on X. The pullback π∗OX(D) is an invertible subsheaf of K(Y ) hence defines
a linear equivalence class of divisors on Y (improperly) denoted by π∗D. Only the linear
equivalence class of π∗D is well-defined in general; however, when D is a divisor (Ui, fi) whose
support does not contain the image π(Y ), the collection (π−1(Ui), fi ◦ π) defines a divisor
π∗D in that class. In particular, it makes sense to restrict a Cartier divisor to a subvariety
not contained in its support, and to restrict a Cartier divisor class to any subvariety.

1.3 Intersection of curves and divisors

1.14. Curves A curve is a projective variety of dimension 1. On a smooth curve C, a
(Cartier) divisor D is just a finite formal linear combination of closed points

∑
p∈C npp. We

define its degree to be the integer
∑
np[k(p) : k]. If D is effective (np ≥ 0 for all p), we can

view it as a 0-dimensional subscheme of X with (affine) support the set of points p for which
np > 0, where it is defined by the ideal m

np

X,p (see 1.4). We have

h0(D,OD) =
∑
p

dimk(OX,p/m
np

X,p) =
∑
p

np dimk(OX,p/mX,p) = deg(D). (1.4)

This justifies the seemingly strange definition of the degree.

One proves (see [H, Corollary II.6.10]) that the degree of the divisor of a regular
function is 0, hence the degree factors through

Pic(C) ' {Cartier divisors on C}
/
≡
lin
→ Z.

Let X be a variety. It will be convenient to define a curve on X as a morphism
ρ : C → X, where C is a smooth (projective) curve. Given any, possibly singular, curve in
X, one may consider its normalization as a “curve on X.” For any Cartier divisor D on X,
we set

(D · C) := deg(ρ∗D). (1.5)

This definition extends to Q-Cartier Q-divisors, but this intersection number is then only a
rational number in general.
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An important remark is that when D is effective and ρ(C) is not contained in its
support, this number is non-negative (this is because the class ρ∗D can be represented by an
effective divisor on C; see 1.13). In general, it is 0 whenever ρ(C) does not meet the support
of D.

If π : X → Y is a morphism between varieties, a curve ρ : C → X can also be considered
as a curve on Y via the composition πρ : C → Y . If D is a Cartier divisor on Y , we have
the so-called projection formula

(π∗D · C)X = (D · C)Y . (1.6)

1.15. Numerically equivalent divisors. Let X be a variety. We say that two Q-Cartier
Q-divisors D and D′ on X are numerically equivalent if

(D · C) = (D′ · C)

for all curves C → X. Linearly equivalent Cartier divisors are numerically equivalent.
Numerical equivalence classes of Cartier divisors form a torsion-free abelian group for the
addition of divisors, denoted by NS(X) (the Néron–Severi group of X); it is a quotient of
the Picard group Pic(X).

One can also define the numerical equivalence class of a Q-Cartier Q-divisor in the
Q-vector space

NS(X)Q := NS(X)⊗Q.

Let π : Y → X be a morphism between varieties. By the projection formula (1.6),
pullback of divisors induces a Q-linear map

ψ∗ : NS(Y )Q → NS(X)Q.

Theorem 1.16 If X is a proper variety, the group NS(X) is free abelian of finite rank,
called the Picard number of X and denoted by ρ(X).

This is proved in [Kl, Proposition 3, p. 334]. Over the complex numbers, we will see
in Section 2.3 that N1(X)Q is a subspace of (the finite-dimensional vector space) H2(X,Q).

We will prove that many important properties of Cartier divisors are numerical, in the
sense that they only depend on their numerical equivalence class in the Néron–Severi group.

Example 1.17 (Curves) If X is a curve, any curve ρ : C → X factors through the normal-

ization ν : X̂ → X and, for any Cartier divisor D on X, one has deg(ρ∗D) = deg(ν∗D) deg(ρ).

The numerical equivalence class of a divisor is therefore given by its degree on X̂, hence

NS(X) ∼−→Z.
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Example 1.18 (Blow up of a point) One deduces from Example 1.11 isomorphisms

Pic(Pn
k) ' NS(Pn

k) ' Z[H].

Let O be a point of Pn
k and let ε : P̃n

k → Pn
k be its blow up. If H0 is a hyperplane in Pn

k

which does not contain O, it can be defined as

P̃n
k = {(x, y) ∈ Pn

k ×H0 | x ∈ 〈Oy〉}

and ε is the first projection. The fiber E := ε−1(O) ⊂ P̃n
k ' H0 is called the exceptional

divisor of the blow up and ε induces an isomorphism P̃n
k rE ∼−→Pn

k r {O}. Assume n ≥ 2.

By [H, Proposition II.6.5], we have isomorphisms Pic(P̃n
k r E) ' Pic(Pn

k r {O}) ' Pic(Pn
k)

and an exact sequence
Z

α−−→ Pic(P̃n
k)→ Pic(P̃n

k r E)→ 0,

where α(m) = [mE].

Let L be a line contained in E and let H ⊂ Pn
k be a hyperplane. If H does not contain

O, we have (ε∗H ·L) = 0. If it does contain O, one checks that ε∗H can be written as H ′+E,
where H ′ meets E along a hyperplane in E. In particular, (H ′ · L) = 1. This implies

0 = (ε∗H · L) = ((H ′ + E) · L) = (E · L) + 1,

hence (E · L) = −1. In particular, the map α is injective and we obtain

Pic(P̃n
k) ' NS(P̃n

k) ' Z[ε∗H]⊕ Z[E].

1.4 Line bundles

A line bundle on a scheme X is a scheme L with a morphism π : L → X which is locally
(on the base) “trivial”, i.e., isomorphic to A1

U → U , in such a way that the changes of
trivializations are linear, i.e., given by (x, t) 7→ (x, ϕ(x)t), for some ϕ ∈ O×X(U). A section
of π : L→ X is a morphism s : X → L such that π ◦ s = IdX . One checks that the sheaf of
sections of π : L→ X is an invertible sheaf on X. Conversely, to any invertible sheaf L on
X, one can associate a line bundle on X: if L is trivial on an affine cover (Ui), just glue the
A1
Ui

together, using the gij of (1.1). It is common to use the words “invertible sheaf” and
“line bundle” interchangeably.

Assume that X is integral and normal. A non-zero section s of a line bundle L → X
defines an effective Cartier divisor on X (by the equation s = 0 on each affine open subset
of X over which L is trivial), which we denote by div(s). With the interpretation (1.3), if
D is a Cartier divisor on X and L is the line bundle associated with OX(D), we have

div(s) = div(f) +D.

In particular, if D is effective, the function f = 1 corresponds to a section of OX(D) with
divisor D. In general, any non-zero rational function f on X can be seen as a (regular,
nowhere vanishing) section of the line bundle OX(− div(f)).
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Example 1.19 Let k be a field and let W be a k-vector space. We construct a line bundle
L → P(W ) whose fiber above a point x of P(W ) is the line `x of W represented by x by
setting

L = {(x, v) ∈ P(W )×W | v ∈ `x}.
On the standard open set Ui (defined after choice of a basis for W ), L is defined in Ui ×W
by the equations vj = vixj, for all j 6= i. The trivialization on Ui is given by (x, v) 7→ (x, vi),
so that gij(x) = xi/xj, for x ∈ Ui ∩ Uj. One checks that this line bundle corresponds to
OPW (−1) (see Example 1.11).

1.5 Linear systems and morphisms to projective spaces

Let X be a normal variety. Let L be an invertible sheaf on X and let |L | be the set of
(effective) divisors of non-zero global sections of L . It is called the linear system associated
with L . The quotient of two sections which have the same divisor is a regular function
on X which does not vanish. If X is projective, this quotient is constant and the map
div : P(H0(X,L ))→ |L | is therefore bijective.

Let D be a Cartier divisor on X. We write |D| instead of |OX(D)|; it is the set of
effective divisors on X which are linearly equivalent to D.

1.20. Morphisms to a projective space. We now come to a very important point:
the link between morphisms from X to a projective space and vector spaces of sections of
invertible sheaves on the normal projective variety X.

Let W be a k-vector space of finite dimension and let ψ : X → P(W ) be a regular
map. Consider the invertible sheaf L = ψ∗OP(W )(1) and the linear map

H0(ψ) : W∨ ' H0
(
P(W ),OP(W )(1)

)
→ H0(X,L ).

A section of OPW (1) vanishes on a hyperplane; its image by H0(ψ) is zero if and only if
ψ(X) is contained in this hyperplane. In particular, H0(ψ) is injective if and only if ψ(X)
is not contained in any hyperplane.

If ψ : X 99K P(W ) is only a rational map, it is defined on a dense open subset U of X,
and we get as above a linear map W∨ → H0(U,L ). If X is locally factorial, the invertible
sheaf L is defined on U but extends to X (write L = OU(D) and take the closure of D
in X) and, since X is normal, the restriction H0(X,L )→ H0(U,L ) is bijective, so we get
again a map W∨ → H0(X,L ).

Conversely, starting from an invertible sheaf L on X and a finite-dimensional vector
space V of sections of L , we define a rational map

ψV : X 99K P(V ∨)

(also denoted by ψL when V = H0(X,L )) by associating to a point x of X the hyperplane
of sections of V that vanish at x. This map is not defined at points where all sections in V

10



vanish (they are called base-points of V ). If we choose a basis (s0, . . . , sN) for V , we have
also

ψV (x) =
(
s0(x), . . . , sN(x)

)
,

where it is understood that the sj(x) are computed via the same trivialization of L in
a neighborhood of x; the corresponding point of PN

k is independent of the choice of this
trivialization.

These two constructions are inverse of one another. In particular, regular maps from
X to a projective space, whose image is not contained in any hyperplane, correspond to
base-point-free linear systems on X.

Example 1.21 (The rational normal curve) We saw in Example 1.11 that the vector
space H0(P1

k,OP1
k
(m)) has dimension m + 1. A basis is given by (sm, sm−1t, . . . , tm). The

corresponding linear system is base-point-free and induces a curve

P1
k −→ Pm

k

(s, t) 7−→ (sm, sm−1t, . . . , tm)

whose image (the rational normal curve) can be defined by the vanishing of all 2× 2-minors
of the matrix (

x0 · · · xm−1
x1 · · · xm

)
.

Example 1.22 (The Veronese surface) We saw in Example 1.11 that the vector space
H0(P2

k,OP2
k
(2)) has dimension 6. The corresponding linear system is base-point-free and

induces a morphism
P2

k −→ P5
k

(s, t, u) 7−→ (s2, st, su, t2, tu, u2)

whose image (the Veronese surface) can be defined by the vanishing of all 2 × 2-minors of
the symmetric matrix x0 x1 x2

x1 x3 x4
x2 x4 x5

 .

Example 1.23 (Cremona involution) The rational map

P2
k 99K P2

k

(s, t, u) 7−→ (1
s
, 1
t
, 1
u
) = (tu, su, st)

is defined everywhere except at the 3 points (1, 0, 0), (0, 1, 0), and (0, 0, 1). It is associated
with the subspace 〈tu, su, st〉 of H0(P2

k,OP2
k
(2)) (which is the space of all conics passing

through these 3 points).
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1.6 Globally generated sheaves

Let X be a k-scheme of finite type. A coherent sheaf F is generated by its global sections
at a point x ∈ X (or globally generated at x) if the images of the global sections of F (i.e.,
elements of H0(X,F )) in the stalk Fx generate that stalk as a OX,x-module. The set of
points at which F is globally generated is the complement of the support of the cokernel of
the evaluation map

ev : H0(X,F )⊗k OX → F .

It is therefore open. The sheaf F is generated by its global sections (or globally generated) if it
is generated by its global sections at each point x ∈ X. This is equivalent to the surjectivity
of ev, and to the fact that F is the quotient of a free sheaf.

Since closed points are dense in X, it is enough to check global generation at every
closed point x. This is equivalent, by Nakayama’s lemma, to the surjectivity of the k(x)-linear
map

evx : H0(X,F )⊗ k(x)→ H0(X,F ⊗ k(x))

We sometimes say that F is generated by finitely many global sections (at x ∈ X) if there
are s0, . . . , sN ∈ H0(X,F ) such that the corresponding evaluation maps, where H0(X,F )
is replaced with the vector subspace generated by s0, . . . , sN , are surjective.

Any quasi-coherent sheaf on an affine sheaf X = Spec(A) is generated by its global

sections (such a sheaf can be written as M̃ , where M is an A-module, and H0(X, M̃) = M).

Any quotient of a globally generated sheaf has the same property. Any tensor product
of globally generated sheaves has the same property. The restriction of a globally generated
sheaf to a subscheme has the same property.

1.24. Globally generated invertible sheaves. An invertible sheaf L on X is generated
by its global sections if and only if for each closed point x ∈ X, there exists a global
section s ∈ H0(X,L ) that does not vanish at x (i.e., sx /∈ mX,xLx, or evx(s) 6= 0 in
H0(X,L ⊗ k(x)) ' k(x)).

Another way to phrase this, using the constructions of 1.20, is to say that the invertible
sheaf L is generated by finitely many global sections if and only if there exists a morphism
ψ : X → PN

k such that ψ∗OPN
k

(1) ' L .4

If D is a Cartier divisor on X, the invertible sheaf OX(D) is generated by its global
sections (for brevity, we will sometimes say that D is generated by its global sections, or
globally generated) if for any x ∈ X, there is a Cartier divisor on X, linearly equivalent to
D, whose support does not contain x (use (1.3)).

Example 1.25 We saw in Example 1.11 that any invertible sheaf on the projective space
Pn

k (with n > 0) is of the type OPn
k
(d) for some integer d. This sheaf is not generated by

4If s ∈ H0(X,L ), the subset Xs = {x ∈ X | evx(s) 6= 0} is open. A family (si)i∈I of sections generate
L if and only if X =

⋃
i∈I Xsi . If X is noetherian and L is globally generated, it is generated by finitely

many global sections.
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its global sections for d ≤ 0 because any global section is constant. However, when d > 0,
the vector space H0(Pn

k,OPn
k
(d)) is isomorphic to the space of homogeneous polynomials of

degree d in the homogeneous coordinates x0, . . . , xn on Pn
k. At each point of Pn

k, one of these
coordinates, say xi, does not vanish, hence the section xdi does not vanish either. It follows
that OPn

k
(d) is generated by its global sections if and only if d > 0.

1.7 Ample divisors

The following definition, although technical, is extremely important.

Definition 1.26 A Cartier divisor D on a scheme X of finite type over a field is ample if,
for every coherent sheaf F on X, the sheaf F (mD) is generated by its global sections for
all m large enough.

Any sufficiently high multiple of an ample divisor is therefore globally generated, but
an ample divisor may not be globally generated (it may have no non-zero global sections).

Proposition 1.27 Let D be a Cartier divisor on a scheme of finite type over a field. The
following conditions are equivalent:

(i) D is ample;
(ii) pD is ample for all p > 0;

(iii) pD is ample for some p > 0.

Proof. Both implications (i) ⇒ (ii) and (ii) ⇒ (iii) are trivial. Assume that pD is ample.
Let F be a coherent sheaf. For each i ∈ {0, . . . , p − 1}, the sheaf F (iD)(mpD) = F ((i +
mp)D) is generated by its global sections for m � 0. It follows that F (mD) is generated
by its global sections for all m� 0, hence D is ample. �

This proposition allows us to say that a Q-Cartier Q-divisor is ample if some (integral)
positive multiple is ample (all further positive multiples are then ample by the proposition).
The restriction of an ample Q-Cartier Q-divisor to a closed subscheme is ample. The sum
of two ample Q-Cartier Q-divisors is still ample. The sum of an ample Q-Cartier Q-divisor
and a globally generated Cartier divisor is ample. Any Q-Cartier Q-divisor on an affine
scheme of finite type over a field is ample.

Proposition 1.28 Let A and E be Q-Cartier Q-divisors on a scheme of finite type over a
field. If A is ample, so is A+ tE for all t rational small enough.

Proof. Upon multiplying by a large positive integer, we may assume that D and E are
Cartier divisors.

Since A is ample, mA ± E is globally generated for all m � 0 and (m + 1)A ± E is
then ample. We write A ± tE = (1 − t(m + 1))A + t((m + 1)A ± E). When 0 < t < 1

m+1
,

this divisor is therefore ample. �
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Here is the fundamental result that justifies the definition of ampleness.

Theorem 1.29 (Serre) The hyperplane divisor on Pn
k is ample.

More precisely, for any coherent sheaf F on Pn
k, the sheaf F (m)5 is generated by

finitely many global sections for all m� 0.

Proof. The restriction of F to each standard affine open subset Ui is generated by finitely
many sections sik ∈ H0(Ui,F ). We want to show that each sikx

m
i ∈ H0(Ui,F (m)) extends

for m� 0 to a section tik of F (m) on Pn
k.

Let s ∈ H0(Ui,F ). It follows from [H, Lemma II.5.3.(b)]) that for each j, the section

xpi s|Ui∩Uj
∈ H0(Ui ∩ Uj,F (p))

extends to a section tj ∈ H0(Uj,F (p)) for p � 0 (in other words, tj restricts to xpi s on
Ui ∩ Uj). We then have

tj|Ui∩Uj∩Uk
= tk|Ui∩Uj∩Uk

for all j and k hence, upon multiplying again by a power of xi,

xqi tj|Uj∩Uk
= xqi tk|Uj∩Uk

.

for q � 0 ([H, Lemma II.5.3.(a)]). This means that the xqi tj glue to a section t of F (p+ q)
on Pn

k which extends xp+qi s.

We thus obtain finitely many global sections tik of F (m) which generate F (m) on
each Ui hence on Pn

k. �

An important consequence of Serre’s theorem is that a projective scheme over k (defined
as a closed subscheme of some Pn

k) carries an effective ample divisor. We also have more.

Corollary 1.30 A Cartier divisor on a projective variety is linearly equivalent to the dif-
ference of two effective Cartier divisors.

Proof. Let D be a Cartier divisor on the variety X and let A be an effective ample divisor
on X. For m � 0, the invertible sheaf OX(D + mA) is generated by its global sections. In
particular, it has a non-zero section; let E be its (effective) divisor. We have D ≡

lin
E −mA,

which proves the proposition. �

Corollary 1.31 (Serre) Let X be a projective k-scheme and let F be a coherent sheaf on
X. For all integers q,

a) the k-vector space Hq(X,F ) has finite dimension;
b) the k-vector spaces Hq(X,F (m)) all vanish for m� 0.

5This is the traditional notation for the tensor product F ⊗OPn
k
(m), which is the same also as F (mH).
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Proof. Assume X ⊂ Pn
k. Since any coherent sheaf on X can be considered as a coherent

sheaf on Pn
k (with the same cohomology), we may assume X = Pn

k. For q > n, we have
Hq(X,F ) = 0 and we proceed by descending induction on q.

By Theorem 1.29, there exist integers r and p and an exact sequence

0 −→ G −→ OPn
k
(−p)r −→ F −→ 0

of coherent sheaves on Pn
k. The vector spaces Hq(Pn

k,OPn
k
(−p)) can be computed by hand

and are all finite-dimensional. The exact sequence

Hq(Pn
k,OX(−p))r −→ Hq(Pn

k,F ) −→ Hq+1(Pn
k,G )

yields a).

Again, direct calculations show that Hq(Pn,OPn
k
(m − p)) vanishes for all m > p and

all q > 0. The exact sequence

Hq(Pn
k,OX(m− p))r −→ Hq(Pn

k,F (m)) −→ Hq+1(Pn
k,G (m))

yields b). �

1.32. A cohomological characterization of ample divisors. A further consequence of
Serre’s theorem is an important characterization of ample divisors by the vanishing of higher
cohomology groups.

Theorem 1.33 Let X be a projective k-scheme and let D be a Cartier divisor on X. The
following properties are equivalent:

(i) D est ample;
(ii) for each coherent sheaf F on X, we have Hq(X,F (mD)) = 0 for all m � 0 and all

q > 0;
(iii) for each coherent sheaf F on X, we have H1(X,F (mD)) = 0 for all m� 0.

Proof. Assume D ample. For m � 0, the divisor mD is globally generated, by a fi-
nite number of sections (see footnote 4). It defines a morphism ψ : X → PN

k such that
ψ∗H ≡

lin
mD. This morphism has finite fibers: if it contracts a curve C ⊂ X to a point, one

has mD|C ≡
lin

0, which contradicts the fact D|C is ample. Since X is projective, ψ is finite.6

Let F be a coherent sheaf on X. The sheaf ψ∗F is then coherent ([H, Corollary
II.5.20]). Since ψ is finite, if U is a covering of PN

k by affine open subsets, ψ−1(U ) is a
covering of X by affine open subsets ([H, Exercise II.5.17.(b)]) and, by definition of ψ∗F ,
the associated cochain complexes are isomorphic. This implies

Hq(X,F ) ' Hq(PN
k , ψ∗F )

6The very important fact that a projective morphism with finite fibers is finite is deduced in [H] from
the difficult Main Theorem of Zariski. In our case, it can also be proved in an elementary fashion (see [D2,
th. 3.28]).
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for all integers q. By Corollary 1.31.b) and the projection formula ([H, Exercise II.5.1.(d)]),
we have, for all q > 0 and s� 0,

0 = Hq(PN
k , (ψ∗F )(sH)) ' Hq(X,F (sψ∗H))) = Hq(X,F (smD)).

Applying this to each of the sheaves F ,F (D), . . . ,F ((m− 1)D), we see that (ii) holds.

Condition (ii) trivially implies (iii).

Assume that (iii) holds. Let F be a coherent sheaf on X, let x be a closed point of X,
and let G be the kernel of the surjection

F → F ⊗ k(x)

of OX-modules. Since (iii) holds, there exists an integer m0 such that

H1(X,G (mD)) = 0

for all m ≥ m0 (note that the integer m0 may depend on F and x). Since the sequence

0→ G (mD)→ F (mD)→ F (mD)⊗ k(x)→ 0

is exact, the evaluation

H0(X,F (mD))→ H0(X,F (mD)⊗ k(x))

is surjective. This means that its global sections generate F (mD) in a neighborhood UF ,m

of x. In particular, there exists an integer m1 such that m1D is globally generated on UOX ,m1 .
For all m ≥ m0, the sheaf F (mD) is globally generated on

Ux = UOX ,m1 ∩ UF ,m0 ∩ UF ,m0+1 ∩ · · · ∩ UF ,m0+m1−1

since it can be written as

(F ((m0 + s)D))⊗ OX(r(m1D))

with r ≥ 0 and 0 ≤ s < m1. Cover X with a finite number of open subsets Ux and take the
largest corresponding integer m0. This shows that D is ample and finishes the proof of the
theorem. �

Corollary 1.34 Let X and Y be projective k-schemes and let ψ : X → Y be a morphism
with finite fibers. Let A be an ample Q-Cartier Q-divisor on Y . Then the Q-Cartier Q-
divisor ψ∗A is ample.

Proof. We may assume that A is a Cartier divisor. Let F be a coherent sheaf on X. We
use the same tools as in the proof of the theorem: the sheaf ψ∗F is coherent and since A
is ample, Hq(X,F (mψ∗A)) ' Hq(Y, (ψ∗F )(mA)) vanishes for all q > 0 and m � 0. By
Theorem 1.33, ψ∗A est ample. �
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Exercise 1.35 In the situation of the corollary, if ψ is not finite, show that ψ∗A is not
ample.

Exercise 1.36 Let X be a projective k-scheme, let F be a coherent sheaf on X, and
let A1, . . . , Ar be ample Cartier divisors on X. Show that for each i > 0, the set

{(m1, . . . ,mr) ∈ Nr | H i(X,F (m1A1 + · · ·+mrAr)) 6= 0}

is finite.

1.8 Ample divisors on curves

We define the (arithmetic) genus of a (projective) curve X over a field k by

g(X) := dimk(H1(X,OX)) =: h1(X,OX).

Example 1.37 The curve P1
k has genus 0. This can be obtained by a computation in Čech

cohomology: cover X with the two standard affine subsets U0 and U1. The Čech complex

H0(U0,OU0)⊕H0(U1,OU1)→ H0(U01,OU01)

is k[t]⊕ k[t−1]→ k[t, t−1], hence the result.

Exercise 1.38 Show that the genus of a plane curve of degree d is (d − 1)(d − 2)/2
(Hint: assume that (0, 0, 1) is not on the curve, cover it with the affine subsets U0 and
U1 and compute the Čech cohomology groups as above).

The following theorem is extremely useful.7

Theorem 1.39 (Riemann–Roch theorem) Let X be a smooth curve. For any divisor D
on X, we have

χ(X,D) = deg(D) + χ(X,OX) = deg(D) + 1− g(X).

Proof. By Proposition 1.30, we can write D ≡
lin
E−F , where E and F are effective (Cartier)

divisors on X. Considering them as (0-dimensional) subschemes of X, we have exact se-
quences (see Remark 1.9)

0→ OX(E − F ) → OX(E) → OF → 0
0→ OX → OX(E) → OE → 0

7This should really be called the Hirzebruch–Riemann–Roch theorem (or a (very) particular case of it).
The original Riemann–Roch theorem is our Theorem 1.39 with the dimension of H1(X,L ) replaced with
that of its Serre-dual H0(X,ωX ⊗L −1).
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(note that the sheaf OF (E) is isomorphic to OF , because OX(E) is isomorphic to OX in a
neighborhood of the (finite) support of F , and similarly, OE(E) ' OE). As remarked in
(1.4), we have

χ(F,OF ) = h0(F,OF ) = deg(F ).

Similarly, χ(E,OE) = deg(E). This implies

χ(X,D) = χ(X,E)− χ(F,OF )

= χ(X,OX) + χ(E,OE)− deg(F )

= χ(X,OX) + deg(E)− deg(F )

= χ(X,OX) + deg(D)

and the theorem is proved. �

We can now characterize ample divisors on smooth curves.

Corollary 1.40 A Q-divisor D on a smooth curve is ample if and only if deg(D) > 0.

Proof. We may assume that D is a divisor. Let p be a closed point of the smooth curve
X. If D is ample, mD − p is linearly equivalent to an effective divisor for some m � 0, in
which case

0 ≤ deg(mD − p) = m deg(D)− deg(p),

hence deg(D) > 0.

Conversely, assume deg(D) > 0. By Riemann–Roch, we have H0(X,mD) 6= 0 for
m� 0, so, upon replacing D by a positive multiple, we can assume that D is effective. As
in the proof of the theorem, we then have an exact sequence

0→ OX((m− 1)D)→ OX(mD)→ OD → 0,

from which we get a surjection

H1(X, (m− 1)D))→ H1(X,mD)→ 0.

Since these spaces are finite-dimensional, this will be a bijection for m � 0, in which case
we get a surjection

H0(X,mD)→ H0(D,OD).

In particular, the evaluation map evx (see Section 1.6) for the sheaf OX(mD) is surjective at
every point x of the support of D. Since it is trivially surjective for x outside of this support
(it has a section with divisor mD), the sheaf OX(mD) is globally generated.

Its global sections therefore define a morphism ψ : X → PN
k such that OX(mD) =

ψ∗OPN
k

(1). Since OX(mD) is non trivial, ψ is not constant, hence finite because X is a

curve. But then, OX(mD) = ψ∗OPN
k

(1) is ample (Corollary 1.34) hence D is ample. �

Exercise 1.41 Let X be a curve and let p be a closed point. Show that X r {p} is
affine.
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1.9 Nef divisors

Let X be a projective k-scheme and let D be an ample Q-Cartier Q-divisor on X. For any
non-constant curve ρ : C → X, the Q-divisor ρ∗D is ample (Corollary 1.34) hence its degree
(D ·C) is positive. The converse is not quite true, although producing a counter-example at
this point is a bit tricky. On the other hand, it is easier to control the following important
property.

Definition 1.42 A Q-Cartier Q-divisor D on a projective k-scheme X is nef 8 if (D·C) ≥ 0
for every curve C on X.

Being nef is by definition a numerical property for Q-divisors (it only depends on the
numerical equivalence class in the Néron–Severi group). One can define nef classes in the
finite-dimensional R-vector space NS(X)R and they obviously form a closed convex cone

Nef(X) ⊂ NS(X)R. (1.7)

An ample divisor is nef. The restriction of a nef Q-divisor to a closed subscheme is
again nef. More generally, the pullback by any morphism of a nef Q-divisor is again nef.
More precisely, if ψ : X → Y is a morphism between projective k-schemes and D is a nef
Q-Cartier Q-divisor on Y , the pullback ψ∗D is nef and, if ψ is not finite (so that it contracts
a curve C which will then satisfy (ψ∗D · C) = 0), its class is on the boundary of the cone
Nef(X).

Example 1.43 If X is a curve, one has an isomorphism deg : NS(X)R
∼→R given by the

degree on the normalization (Example 1.17) and, tautologically,

Nef(X) = deg−1(R≥0).

Example 1.44 One checks that in NS(Pn
k)R ' R[H], one has

Nef(Pn
k) = R≥0[H].

Let ε : P̃n
k → Pn

k be the blow up of a point O, with exceptional divisor E, so that NS(P̃n
k)R '

R[ε∗H] ⊕R[E] (Example 1.18). The plane closed convex cone Nef(P̃n
k) is bounded by two

half-lines. Note that ε∗H is nef, as the pullback of a nef divisor, but for any t > 0, one has
(if L is a line in E) ((ε∗H + tE) · L) = −t, hence ε∗H + tE is not nef and R≥0[ε∗H] is one
of these half-lines.

Alternatively, one could have argued that since ε is not finite, the class ε∗H is on the
boundary of Nef(P̃n

k). To find the other boundary half-line, recall that there is another

morphism P̃n
k → Pn−1

k . One checks that the class of the inverse image of the hyperplane in
Pn−1

k is [ε∗H − E] (its intersection with the strict transform of a line passing through O is
0); it generates the other boundary half-line.

8This acronym comes from “numerically effective,” or “numerically eventually free” (according to [R,
D.1.3]).
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Exercise 1.45 Let ε : X → Pn
k be the blow up of two distinct points, with exceptional

divisors E1 and E2. If H is a hyperplane on Pn
k, prove

NS(X)R ' R[ε∗H]⊕R[E1]⊕R[E2],

Nef(X) ' R≥0[ε∗H]⊕R≥0[ε∗H − E1]⊕R≥0[ε∗H − E2].

1.10 Cones of divisors

One can also consider classes of ample Cartier divisors. They span a convex cone

Amp(X) ⊂ Nef(X) ⊂ NS(X)R.

which is open by Proposition 1.28. However, we do not know whether ampleness is a numer-
ical property: if the class of Q-divisor D is in Amp(X), is D ample? This is an important
but hard question. To answer it (positively), we will skip a whole chunk of the theory and
accept without proof the following key result.

Theorem 1.46 On a projective scheme, the sum of two Q-Cartier Q-divisors, one nef and
one ample, is ample.

Corollary 1.47 On a projective scheme, ampleness is a numerical property and the ample
cone is the interior of the nef cone.

Proof. Let X be a projective scheme and let D be a Q-Cartier Q-divisor whose class is in
the interior of the nef cone. We want to prove that D is ample. We may assume that D is
a Cartier divisor. Let H be an ample divisor on X. Since [D] is in the interior of the nef
cone, [D]− t[H] is still in the nef cone for some t > 0 (small enough). Then D − tH is nef,
and D = (D − tH) + tH is ample by the theorem. �

We complete our collection of cones of divisors with the (convex) effective cone Eff(X) ⊂
NS(X)R generated by classes of effective Cartier divisors. It contains the ample cone (why?).
It may happen that Eff(X) is not closed and we let Psef(X), the pseudo-effective cone, be
its closure. Finally, the big cone

Big(X) = Eff(X) + Amp(X) ⊂ Eff(X) (1.8)

is the interior of the pseudo-effective cone. All in all, we have

Nef(X) ⊂ Psef(X) ⊂ NS(X)R
∪

∪ Eff(X)
∪

Amp(X) ⊂ Big(X).

(1.9)
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Example 1.48 With the notation of Example 1.44, we have

NS(P̃n
k)R ' R[ε∗H]⊕R[E],

Big(P̃n
k) ' R>0[ε∗H − E]⊕R>0[E],

Eff(P̃n
k) = Psef(P̃n

k) ' R≥0[ε∗H − E]⊕R≥0[E],

Amp(P̃n
k) ' R>0[ε∗H]⊕R>0[ε∗H − E],

Nef(P̃n
k) ' R≥0[ε∗H]⊕R≥0[ε∗H − E].

Only the effective cone needs to be described: its description follows from the fact that if
D ⊂ P̃n

k is an effective divisor other than E, with class a[ε∗H−E]+b[E], its intersection with
a line contained in E (but not in D) is a− b, which must therefore be non-negative, and its
intersection with the strict transform of a line passing through O is b, which must also be non-
negative, hence a ≥ b ≥ 0. The effective cone is therefore contained in R≥0[ε∗H−E]⊕R≥0[E],
and the reverse inclusion is obvious.

1.11 The canonical divisor

Let X be a smooth variety. We define the canonical sheaf ωX as the determinant of the sheaf
of differentials ΩX . It is an invertible sheaf on X. A canonical divisor KX is any Cartier
divisor on X which defines ωX .

When X is only normal, with regular locus j : U ↪→ X, we define ωX as the (not
necessarily invertible) sheaf j∗ωU . A canonical divisor KX is then any Weil divisor on X
which restricts to a canonical divisor on U .

If Y ⊂ X is a normal Cartier divisor in X, one has the adjunction formula

KY = (KX + Y )|Y . (1.10)

Example 1.49 The canonical sheaf on Pn
k is ωPn

k
= OPn

k
(−n − 1). If follows from the

adjunction formula (1.10) that for a normal hypersurface X of degree d in Pn
k, one has

ωX = OX(−n− 1 + d).

When X is projective of dimension n and smooth (or only Cohen–Macaulay), the
canonical sheaf ωX is a dualizing sheaf: for any locally free coherent sheaf F on X, there
are isomorphisms (Serre duality)

H i(X,F ) ' Hn−i(X,F∨ ⊗ ωX)∨.
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Chapter 2

Riemann–Roch theorems

If A is an ample Cartier divisor on a projective scheme X, the vector space H0(X,mA)
contains, for m � 0, “enough elements” to induce a finite morphism ψmA : X → PN

k .
Riemann–Roch theorems deal with estimations of the dimensions h0(X,mA) of these spaces
of sections. We will not prove much here, but only state the main results.

When X is a smooth curve, the Riemann–Roch theorem is (Theorem 1.39)

χ(X,mD) := h0(X,mD)− h1(X,mD) = m deg(D) + χ(X,OX) = m deg(D) + 1− g(X).

This is a polynomial of degree 1 in m. This fact is actually very general and we will use it
to define the intersection of n Cartier divisors on a projective scheme of dimension n over a
field.

2.1 Intersecting two curves on a surface

On a surface, curves and hypersurfaces are the same thing. Formula (1.5) therefore defines
the intersection number of two curves on a surface. We want to give another, more concrete,
interpretation of this number.

Let X be a smooth projective surface defined over an algebraically closed field k and
let C1 and C2 be two curves on X with no common component. We would like to define
the intersection number of C1 and C2 as the number of intersection points “counted with
multiplicities.”

One way to do that is to define the intersection multiplicity of C1 and C2 at a point x
of C1 ∩ C2. If f1 and f2 be respective generators of the ideals of C1 and C2 at x, this is

mx(C1 ∩ C2) = dimk OX,x/(f1, f2).

By the Nullstellensatz, the ideal (f1, f2) contains a power of the maximal ideal mX,x, hence
the number mx(C1∩C2) is finite. It is 1 if and only if f1 and f2 generate mX,x, which means
that they form a system of parameters at x, i.e., that C1 and C2 meet transversally at x.
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We then set
(C1 · C2) =

∑
x∈C1∩C2

mx(C1 ∩ C2). (2.1)

Another way to understand this definition is to consider the scheme-theoretic intersection
C1 ∩ C2. It is a scheme whose support is finite, and by definition, OC1∩C2,x = OX,x/(f1, f2).
Hence,

(C1 · C2) = h0(X,OC1∩C2). (2.2)

There is still another way to interpret this number.

Theorem 2.1 Under the hypotheses above, we have

(C1 · C2) = χ(X,−C1 − C2)− χ(X,−C1)− χ(X,−C2) + χ(X,OX). (2.3)

Proof. Let s1 be a section of OX(C1) with divisor C1 and let s2 be a section of OX(C2)
with divisor C2. One checks that we have an exact sequence

0→ OX(−C1 − C2)
(s2,−s1)−−−→ OX(−C1)⊕ OX(−C2)

(
s1
s2

)
−−−→ OX → OC1∩C2 → 0.

(Use the fact that the local rings of X are factorial and that local equations of C1 and C2

have no common factor.) The theorem follows. �

A big advantage is that the right side of (2.3) now makes sense for any (even non-
effective) Cartier divisors C1 and C2. This is the approach we will take in the next section
to generalize this definition in all dimensions.

Finally, we check that the definition (2.1) agrees with our former definition (1.5).

Lemma 2.2 For any smooth curve C ⊂ X and any divisor D on X, we have

(D · C) = deg(D|C).

Proof. We have exact sequences

0→ OX(−C)→ OX → OC → 0

and
0→ OX(−C −D)→ OX(−D)→ OC(−D|C)→ 0,

which give
(D · C) = χ(C,OC)− χ(C,−D|C) = deg(D|C)

by the Riemann-Roch theorem on C. �

Example 2.3 If C1 and C2 are curves in P2
k of respective degress d1 and d2, we have (this

is Bézout’s theorem)
(C1 · C2) = d1d2.

Indeed, since χ(P2
k,OP2

k
(−d)) =

(
d
2

)
for d ≥ 0, Theorem 2.1 gives

(C1 · C2) =

(
d1 + d2

2

)
−
(
d1
2

)
−
(
d2
2

)
+ 1 = d1d2.
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2.2 General intersection numbers

Although we will not present it here, the proof of the following theorem is not particularly
hard (it proceeds by induction on n, the case n = 1 being the Riemann–Roch Theorem 1.39).

Theorem 2.4 Let X be a projective k-scheme of dimension n.

a) Let D be a Cartier divisor on X. The function m 7−→ χ(X,mD) takes the same values on
Z as a polynomial P (T ) ∈ Q[T ] of degree ≤ n. We define (Dn) to be n! times the coefficient
of T n in P .

b) More generally, if D1, . . . , Dr are Cartier divisors on X, the function

(m1, . . . ,mr) 7−→ χ(X,m1D1 + · · ·+mrDr)

takes the same values on Zr as a polynomial P (T1, . . . , Tr) with rational coefficients of total
degree ≤ n. When r ≥ n, we define the intersection number

(D1 · . . . ·Dr)

to be the coefficient of T1 · · ·Tr in P (it is 0 when r > n).

c) The map
(D1, . . . , Dn) 7−→ (D1 · . . . ·Dn)

is Z-multilinear, symmetric, and takes integral values.

The intersection number only depends on the linear equivalence classes of the divisors
Di, since it is defined from the invertible sheaves OX(Di) but in fact only on the numerical
equivalence class of the Di. This follows from the fact that for any numerically trivial
divisor D and any coherent sheaf F on X, we have χ(X,F (D)) = χ(X,F ) ([Kl, Section 2,
Theorem 1]).

Example 2.5 If X is a subscheme of PN
k of dimension n and if H|X is a hyperplane section

of X, the intersection number ((H|X)n) is the degree of X as defined in [H, Section I.7]. In
particular, (Hn) = 1 on Pn

k.

Example 2.6 If D1, . . . , Dn are effective and meet properly in a finite number of points,
and if k is algebraically closed, the intersection number does have a geometric interpretation
as the number of points in D1 ∩ · · · ∩Dn, counted with multiplicities. This is the length of
the 0-dimensional scheme-theoretic intersection D1 ∩ · · · ∩ Dn (see [Ko1, Theorem VI.2.8];
compare with (2.1) and (2.2)).

By multilinearity, we may define intersection numbers of Q-Cartier Q-divisors. For
example, let X be the cone in P3

k with equation x0x1 = x22 (its vertex is (0, 0, 0, 1)) and let
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L be the line defined by x0 = x2 = 0 (compare with Example 1.6). Then 2L is a hyperplane
section (x0 = 0) of X, hence (2L)2 = deg(X) = 2. So we have (L2) = 1/2.

Intersection numbers are seldom computed directly from the definition. Here are two
useful tools.

Proposition 2.7 Let π : Y → X be a surjective morphism between projective varieties and
let D1, . . . , Dr be Cartier divisors on X with r ≥ dim(Y ).

a) (Restriction formula) If Dr is effective,

(D1 · . . . ·Dr) = (D1|Dr · . . . ·Dr−1|Dr).

b) (Pullback formula) We have1

(π∗D1 · . . . · π∗Dr) = deg(π)(D1 · . . . ·Dr).

Example 2.8 Let again ε : P̃n
k → Pn

k be the blow up of a point, with exceptional divisor
E (Example 1.18). If L is a line contained in E ' Pn−1

k , we saw in that example that
(E · L) = −1. Since Pic(E) ' Z, this implies OP̃n

k
(E)|E = OE(−1). The restriction formula

then gives
(En) = ((E|E)n−1) = (−1)n−1.

On the other hand, the divisor class [ε∗H −E] is the pullback of a hyperplane class via the

second projection P̃n
k → Pn−1

k (Example 1.44). The pullback formula therefore gives

((ε∗H − E)n) = 0. (2.4)

We may choose H such that ε∗H does not meet E. The restriction formula then gives
(D1 · . . . ·Dn−2 · E · ε∗H) = 0 for all divisors D1, . . . , Dn−2. Expanding (2.4), we get

((ε∗H)n) + (−1)n(En) = 0

and again, by the projection formula, (En) = (−1)n−1((ε∗H)n) = (−1)n−1(Hn) = (−1)n−1.

Corollary 2.9 Let D be a Q-Cartier Q-divisor on a projective variety X of dimension n.

If D is ample, (Dn) > 0; if D is nef, (Dn) ≥ 0.

Proof. If D is ample, the sections of mD define, for m� 0, a finite morphism ψ : X → PN
k

such that ψ∗H ≡
lin
mD. Since the image ψ(X) has dimension n, we have (Example 2.5)

((H|ψ(X))
n) = deg(ψ(X)) > 0. The projection formula then yields

((mD)n) = ((ψ∗H|ψ(X))
n),

hence (Dn) > 0.

If D is only nef, choose an ample divisor A on X. For all t ∈ Q>0, the Q-divisor D+tA
is ample (Theorem 1.46), and we get (Dn) ≥ 0 by letting t go to 0 in ((D + tA)n) > 0. �

1The degree deg(π) is the degree of the field extension π∗ : K(X) ↪→ K(Y ) if this extension is finite, and
0 otherwise.
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Exercise 2.10 Let D1, . . . , Dn be Q-Cartier Q-divisors on a projective variety. Prove
the following:

a) if D1, . . . , Dn are ample, (D1 · . . . ·Dn) > 0;

b) if D1, . . . , Dn are nef, (D1 · . . . ·Dn) ≥ 0.

2.3 Intersection of divisors over the complex numbers

Let X be a smooth projective complex manifold of dimension n. There is a short exact
sequence of analytic sheaves

0→ Z
·2iπ−→ OX,an

exp−→ O∗X,an → 0

which induces a morphism

c1 : H1(X,O∗X,an)→ H2(X,Z)

called the first Chern class. So we can in particular define the first Chern class of an algebraic
line bundle on X. Given divisors D1, . . . , Dn on X, the intersection product (D1 · . . . ·Dn)
defined in Theorem 2.4 is the cup product

c1(OX(D1)) ^ · · ·^ c1(OX(Dn)) ∈ H2n(X,Z) ' Z.

In particular, the degree of a divisor D on a curve C ⊂ X is

c1(ν
∗OX(D)) ∈ H2(C̃,Z) ' Z.

where ν : C̃ → C is the normalization of C.

Remark 2.11 A theorem of Serre says that the canonical map H1(X,O∗X)→ H1(X,O∗X,an)
is bijective. In other words, isomorphism classes of holomorphic and algebraic line bundles
on X are the same.

2.4 Asymptotic numbers of sections

Let D be a Cartier divisor on a projective k-scheme X of dimension n. By definition, we
have

χ(X,mD) =
n∑
i=0

(−1)ihi(X,mD) = mn (Dn)

n!
+O(mn−1).

The following proposition (whose proof proceeds again by induction on n) gives more infor-
mation on each term hi(X,mD).
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Proposition 2.12 Let D be a Cartier divisor on a projective k-scheme X of dimension n.

a) We have hi(X,mD) = O(mn) for all i ≥ 0.

b) If D is nef, we have hi(X,mD) = O(mn−1) for all i > 0, hence

h0(X,mD) = mn (Dn)

n!
+O(mn−1).

In particular, if D is ample, we have by Corollary 2.9

lim
m→+∞

h0(X,mD)

mn
> 0.

We defined in (1.8) a big class as the sum of an effective and an ample class. Let us
say that a Q-Cartier Q-divisor D is big if it can be written as the sum of an effective and
an ample divisor. This is a numerical property since ampleness is.

Proposition 2.13 A Cartier divisor D on a projective k-scheme X is big if and only if

lim sup
m→+∞

h0(X,mD)

mn
> 0. (2.5)

In particular, if a Q-Cartier Q-divisor D is nef, it is big if and only if (Dn) > 0.

The limsup in (2.5) is actually a limit, but this is difficult to prove.

Proof. If D is big, we write it as D = E + A, with E effective and A ample. We may
assume that E and A are divisors. Then h0(X,mD) ≥ h0(X,mA) for all m and (2.5) follows.

Assume conversely that (2.5) holds. Let A be an ample effective divisor on X. The
exact sequence

0→ OX(mD − A)→ OX(mD)→ OA(mD|A)→ 0

induces an exact sequence

0→ H0(X,mD − A)→ H0(X,mD)→ H0(A,mD|A).

Since A has dimension n − 1, Proposition 2.12.a) gives h0(A,mD|A) = O(mn−1), hence
(2.5) implies H0(X,mD − A) 6= 0 for infinitely many m > 0. For those m, we can write
mD − A ≡

lin
E, with E effective, hence D is big. �

Ample divisors are nef and big, but not conversely (see Example 1.48). Nef and big
divisors share many of the properties of ample divisors: for example, Proposition 2.12 shows
that the dimensions of the spaces of sections of their successive multiples grow in the same
fashion. They are however much more tractable; for instance, the pullback of a nef and big
divisor by a generically finite morphism is still nef and big.
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2.5 Kodaira dimension and Iitaka fibrations

Let D be a Cartier divisor on a projective k-scheme X. If D is ample, the sections of mD
define, for m � 0, a finite morphism ψmD : X → PN

k (one can even show that ψmD is a
closed embedding for all m� 0).

One may wonder what happens for a general (non-ample) Cartier divisor. When D
is only big, we may write m0D = E + A, with E effective and A ample divisors, for some
positive integer m0. Among the sections of mm0D, one then finds the sections of mA times
smE , where div(sE) = E. In other words, the composition of the rational map

ψmm0D : X 99K PN
k

with a suitable linear projection PN
k 99K PM

k is the morphism

ψmA : X −→ PM
k .

In particular, maxm>0 dim(ψmD(X)) = n.

We make the following important definition.

Definition 2.14 (Kodaira dimension) Let X be a projective normal variety and let D be
a Cartier divisor on X. We define the Kodaira dimension of D by

κ(D) := max
m>0

dim(ψmD(X)).

We make the convention

κ(D) = −∞ ⇐⇒ ∀m > 0 H0(X,mD) = 0

and we also have
κ(D) = 0 ⇐⇒ max

m>0
h0(X,mD) = 1.

We just saw that big divisors have maximal Kodaira dimension n := dim(X). Con-
versely, if D has maximal Kodaira dimension n, some m0D defines a rational map ψ : X 99K
PN

k with image Y := ψ(X) of dimension n. Let U ⊂ X be the largest smooth open subset
on which ψ is defined. Since X is normal, we have codimX(X r U) ≥ 2 and we can write
m0D|U ≡

lin
ψ|∗UH + E, with E effective Cartier divisor on U . Since X is normal, we have for

all m > 0

h0(X,mm0D) = h0(U,mm0D|U) ≥ h0(U,mψ|∗UH) ≥ h0(Y,mH|Y ) =
deg(Y )

n!
mn +O(mn−1),

hence D is big.

The Cartier divisors with maximal Kodaira dimension are therefore exactly the big
divisors, so this property is numerical. This is not the case in general: although κ(D)
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only depends on the linear equivalence classes of the divisor D, since it is defined from the
invertible sheaf OX(D), it is not in general invariant under numerical equivalence. If D is
a divisor of degree 0 on a curve X (so that D ≡

num
0), one has κ(D) = −∞ if [D] is not a

torsion element of Pic(X), and κ(D) = 0 otherwise.

When X is a smooth projective variety, the Kodaira dimension κ(X) of the canonical
divisor KX (see Section 1.11) is an important invariant of the variety (called the Kodaira
dimension of X). We say that X is of general type is KX is big, i.e., if κ(X) = dim(X).

Examples 2.15 1) The Kodaira dimension of Pn
k is −∞.

2) If X is a smooth hypersurface of degree d in Pn
k, its Kodaira dimension is (see

Example 1.49)

κ(X) =


−∞ if d ≤ n;

0 if d = n+ 1;

dim(X) = n− 1 if d > n+ 1.

3) If X is a curve, its Kodaira dimension is

κ(X) =


−∞ if g(X) = 0;

0 if g(X) = 1;

1 if g(X) ≥ 2.

There is a general structure theorem. For a Cartier divisor D on an integral projective
scheme X, we define the set

N(D) := {m ≥ 0 | H0(X,mD) 6= 0}.

It is a semi-group hence, if N(D) 6= 0 (i.e., if κ(D) 6= −∞), all sufficiently large elements of
N(D) are multiples of a single largest positive integer which we denote by e(D). When D is
ample, and even only big, one has e(D) = 1.

Example 2.16 Let Y be a projective variety, let A be an ample divisor on Y , let E be an
elliptic curve, and let B be an element of order m ≥ 2 in the group Pic(E). On X := Y ×E,
the divisor D := pr∗1A+ pr∗2B has Kodaira dimension dim(X)− 1 and e(D) = m.

For each m ∈ N(D), one can construct the rational map

ψmD : X 99K P(H0(X,mD)∨).

Theorem 2.17 (Iitaka fibration) Let X be a projective normal variety and let D be a
Cartier divisor on X. For all m ∈ N(D) sufficiently large, the induced maps

X 99K ψmD(X)
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are all birationally equivalent to a fixed algebraic fibration

X∞ −→ Y∞

of normal projective varieties, with dim(Y∞) = κ(D) and such that the restriction of D to a
very general fiber has Kodaira dimension 0.

To understand this theorem, we need to know what an algebraic fibration is. Essen-
tially, we require the fibers to be connected, so when D is big (i.e., dim(X∞) = dim(Y∞)),
the theorem says in particular that for each m sufficiently large, ψmD is birational onto its
image.

The formal definition is the following.

Definition 2.18 An (algebraic) fibration is a projective morphism π : X → Y between va-
rieties such that π∗OX ' OY .

The composition of two fibrations is a fibration. When Y is normal, any projec-
tive birational map π : X → Y is a fibration.2 Conversely, any fibration π : X → Y with
dim(X) = dim(Y ) is birational (this follows for example from Proposition 2.19 below).

Since the closure of the image of a morphism π is defined by the ideal sheaf kernel of
the canonical map OY → π∗OX , a fibration is surjective and, by Zariski’s Main Theorem,
its fibers are connected ([H, Corollary III.11.3]) and even geometrically connected ([G1, III,
Corollaire (4.3.12)]). When Y is normal, the converse is true in characteristic 0.3 More
generally, any projective morphism ρ : X → Y between varieties factors as

ρ : X
π−−→ Y ′

u−−→ Y

where π is a fibration and u is finite. This is the Stein factorization and ρ is a fibration if
and only if u is an isomorphism.

Proposition 2.19 A surjective projective morphism ρ : X → Y between normal varieties is
a fibration if and only if the corresponding finitely generated field extension k(Y ) ⊂ k(X) is
algebraically closed.

This proposition allows us to extend the definition of a fibration to rational maps
between normal varieties.

2For any affine open subset U ⊂ Y , the ring extension H0(U,OY ) ⊂ H0(U, π∗OX) is finite because π is
projective and the quotient fields are the same because k(Y ) = k(X). Since H0(U,OY ) is integrally closed
in k(Y ), these rings are the same.

3In general, one needs to require that the generic fiber of π be geometrically integral. In positive charac-
teristic, u might very well be a bijection without being an isomorphism (even if Y is normal: think of the
Frobenius morphism).
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Proof. If the extension k(Y ) ⊂ k(X) is algebraically closed, we consider the Stein factor-
ization ρ : X → Y ′

u−−→ Y . The extension k(Y ) ⊂ k(Y ′) is finite, hence algebraic, hence
trivial since k(Y ′) ⊂ k(X). The morphism u is then finite and birational, hence an isomor-
phism (because Y is normal), and ρ is a fibration.

Assume conversely that ρ is a fibration. Any element of k(Y ) algebraic over k(X)
generates a finite extension k(X) ⊂ K contained in k(Y ) which corresponds to a rational

factorization ρ : X
π
99K Y ′

u
99K Y , where K = k(Y ′) and u is generically finite. Replacing X

and Y ′ by suitable modifications, we may assume that π and u are morphisms. Since X is
normal, ρ is still a fibration hence, for any affine open subset U ⊂ Y , the inclusions

H0(U,OY ) ⊂ H0(U, u∗OY ′) ⊂ H0(U, ρ∗OX) = H0(U,OY )

are equalities, hence u has degree 1 and K = k(X). This proves that the extension k(Y ) ⊂
k(X) is algebraically closed. �

Remark 2.20 Here are some other properties of a fibration π : X → Y .

• If X is normal, so is Y .
• For any Cartier divisor D on Y , one has H0(X, π∗D) ' H0(Y,D) and κ(X, π∗D) '
κ(Y,D).
• The induced map π∗ : Pic(Y )→ Pic(X) is injective.
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Chapter 3

Rational curves on varieties

Mori proved in 1979 a conjecture of Hartshorne characterizing projective spaces as the only
smooth projective varieties with ample tangent bundle ([Mo1]). The techniques that Mori
introduced to solve this conjecture have turned out to have more far reaching applications
than Hartshorne’s conjecture itself and we will explain them in this chapter.

3.1 Parametrizing curves

Let k be a field and let C be a smooth (projective) curve over k. Given a quasi-projective
k-variety X, we want to “parametrize” all curves C → X. If T is a k-scheme, a family of
curves from C to X parametrized by T is a morphism ρ : C × T → X: for each closed point
t ∈ T , one has a curve c 7→ ρt(c) := ρ(c, t) (defined over the field k(t)).

We want to construct a k-scheme Mor(C,X) and a “universal family of curves”

ev : C ×Mor(C,X)→ X, (3.1)

called the called evaluation map, such that for any k-scheme T , the correspondance between

• morphisms ϕ : T → Mor(C,X) and
• families ρ : C × T → X of curves parametrized by T

obtained by sending ϕ to
ρ(c, t) = ev(c, ϕ(t))

is one-to-one. In other words, any family of curves parametrized by T is pulled back from
the universal family (3.1) by a uniquely defined morphism T → Mor(C,X).

Taking T = Spec(k), we see that k-points of Mor(C,X) should be in one-to-one cor-
respondence with curves C → X.

Taking T = Spec(k[ε]/(ε2)), we see that the Zariski tangent space to Mor(C,X) at a
k-point [ρ] is isomorphic to the space of extensions of ρ to morphisms

ρε : C × Spec k[ε]/(ε2)→ X
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which should be thought of as first-order infinitesimal deformations of ρ.

Theorem 3.1 (Grothendieck, Mori) Let k be a field, let C be a smooth k-curve, let X
be a smooth quasi-projective k-variety, and let ρ : C → X be a curve.

a) There exist a k-scheme Mor(C,X), locally of finite type, which parametrizes morphisms
from C to X.

b) The Zariski tangent space to Mor(C,X) at [ρ] is isomorphic to H0(C, ρ∗TX).

c) Locally around [ρ], the scheme Mor(C,X) is defined by h1(C, ρ∗TX) equations in a smooth
k-variety of dimension h0(C, ρ∗TX).1 In particular, by Riemann–Roch,2

dim[ρ] Mor(C,X) ≥ χ(C, ρ∗TX) = −(KX · C) + (1− g(C)) dim(X). (3.2)

We will not reproduce Grothendieck’s general construction, since it is very nicely ex-
plained in [G2], and we will only explain the much easier case C = P1

k.

Any k-morphism ρ : P1
k → PN

k can be written as

ρ(u, v) = (F0(u, v), . . . , FN(u, v)), (3.3)

where F0, . . . , FN are homogeneous polynomials in two variables, of the same degree d, with
no non-constant common factor in k[U, V ]. Morphisms P1

k → PN
k of degree d are therefore

parametrized by the (open) complement Mord(P
1
k,P

N
k ) in P(k[U, V ]N+1

d ) of the union, for
all e ∈ {1, . . . , d}, of the (closed) images of the morphisms

P(k[U, V ]e)×P(k[U, V ]N+1
d−e ) −→ P(k[U, V ]N+1

d )

(G, (G0, . . . , GN)) 7−→ (GG0, . . . , GGN).

The evaluation map is

ev : P1
k ×Mord(P

1
k,P

N
k ) −→ PN

k(
(u, v), ρ

)
7−→

(
F0(u, v), . . . , FN(u, v)

)
.

Example 3.2 In the case d = 1, we can write Fi(u, v) = aiu+biv, with (a0, . . . , aN , b0, . . . , bN)
in P2N+1

k . The condition that F0, . . . , FN have no common zeroes is equivalent to

rank

(
a0 · · · aN
b0 · · · bN

)
= 2.

Its (closed) complement Z in P2N+1
k is defined by the vanishing

∣∣∣∣ai aj
bi bj

∣∣∣∣ = 0 of all 2 × 2-

minors. The evaluation map is

ev : P1
k × (P2N+1

k r Z) −→ PN
k(

(u, v), (a0, . . . , aN , b0, . . . , bN)
)
7−→

(
a0u+ b0v, . . . , aNu+ bNv

)
.

1In particular, a sufficient (but not necessary!) condition for Mor(C,X) to be smooth at [ρ] is
H1(C, ρ∗TX) = 0.

2We are using here a generalization of Theorem 1.39 to locally free sheaves of any rank.
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Finally, morphisms from P1
k to PN

k are parametrized by the disjoint union

Mor(P1
k,P

N
k ) =

⊔
d≥0

Mord(P
1
k,P

N
k ) (3.4)

of quasi-projective schemes.

When X is a (closed) subscheme of PN
k defined by homogeneous equations G1, . . . , Gm,

morphisms P1
k → X of degree d are parametrized by the subscheme Mord(P

1
k, X) of

Mord(P
1
k,P

N
k ) defined by the equations

Gj(F0, . . . , FN) = 0 for all j ∈ {1, . . . ,m}.

Again, morphisms from P1
k to X are parametrized by the disjoint union

Mor(P1
k, X) =

⊔
d≥0

Mord(P
1
k, X)

of quasi-projective schemes.3

We now make a very important remark. Assume thatX can be defined by homogeneous
equations G1, . . . , Gm with coefficients in a subring R of k. If m is a maximal ideal of R,
one may consider the reduction Xm of X modulo m: this is the subscheme of PN

R/m defined
by the reductions of the Gj modulo m.

Because the equations defining the complement of Mord(P
1
k,P

N
k ) in P(k[U, V ]N+1

d )
have coefficients in Z and are the same for all fields, the scheme Mord(P

1
k, X) is defined over

R and Mord(P
1
k, Xm) is its reduction modulo m. In fancy terms, one may express this as

follows: if X is a scheme over SpecR, the R-morphisms P1
R →X are parametrized by the

R-points of a locally noetherian scheme

Mor(P1
R,X )→ SpecR

and the fiber of a closed point m is the space Mor(P1
k,Xm).

3.2 Free rational curves and uniruled varieties

Let X be a smooth k-variety of dimension n and let ρ : P1
k → X be a non-constant morphism

(this is called a rational curve on X). Any locally free coherent sheaf on P1
k is isomorphic

to a direct sum of invertible sheaves, hence we can write

ρ∗TX ' OP1
k
(a1)⊕ · · · ⊕ OP1

k
(an), (3.5)

3When X is only quasi-projective, embed it into some projective variety X. There is an evaluation
morphism

ev : P1
k ×Mor(P1

k, X) −→ X

and Mor(P1
k, X) is the complement in Mor(P1

k, X) of the image by the (proper) second projection of the
closed subscheme ev−1(X rX).
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with a1 ≥ · · · ≥ an and a1 ≥ 2. If H1(P1
k, ρ
∗TX) vanishes (this happens exactly when

an ≥ −1), the scheme Mor(P1
k, X) is smooth at [ρ] (Theorem 3.1). We investigate a stronger

condition.

Definition 3.3 Let X be a k-variety. A rational curve ρ : P1
k → X is free if its image is

contained in the smooth locus of X and ρ∗TX is generated by its global sections (this happens
exactly when an ≥ 0).

By Theorem 3.1, the scheme Mor(P1
k, X) is smooth at points corresponding to free

rational curves. The KX-degree of a free curve is −
∑
ai < 0.

The importance of free curves comes from the following result. We will say that a
k-variety X is covered by rational curves, or is uniruled, if there is a k-variety M and a
dominant morphism

P1
k ×M → X

which does not contract P1
k × {m} for some (hence for all) geometric point m ∈ X(k).4 By

the universal property, we may assume that M is a component of Mor(P1
k, X). Using again

this universal property, one checks that given any field extension L of k, the k-variety X is
uniruled if and only if the L-variety XL is uniruled.

If X is uniruled and k is algebraically closed, there is a rational curve through every
point of X. The converse holds if k is uncountable (use the fact that Mor(P1

k, X) has
countably many components). It is therefore common to work on an algebraically closed
uncountable extension of the base field.

Proposition 3.4 Let X be a smooth quasi-projective k-variety.

a) If the rational curve ρ : P1
k → X is free, the evaluation map

ev : P1
k ×Mor(P1

k, X)→ X

is smooth at all points of P1
k × {[ρ]}, hence X is uniruled.

b) Conversely, if X is uniruled and k is algebraically closed of characteristic 0, there is a
free rational curve on X through a general point of X.

Proof. The tangent map to ev at (t, [ρ]) is the map

TP1
k,t
⊕H0(P1

k, ρ
∗TX) −→ TX,ρ(t) ' (ρ∗TX)t

(u, σ) 7−→ Ttρ(u) + σ(t).

If ρ is free, this map is surjective because the evaluation map

H0(P1
k, ρ
∗TX) −→ (ρ∗TX)t

4This is automatic if dim(M) = dim(X) − 1 and we can always reduce to that case, but the seemingly
more general definition we gave is more flexible.
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is. Since Mor(P1
k, X) is smooth at [ρ], the morphism ev is smooth at (t, [ρ]) and proves a).

Conversely, if ev is dominant, it is smooth at a general point (t, [ρ]) because we are in
characteristic 0. This implies that the map

H0(P1
k, ρ
∗TX)→ (ρ∗TX)t/ Im(Ttρ) (3.6)

is surjective. There is a commutative diagram

H0(P1
k, ρ
∗TX)

a−−−→ (ρ∗TX)tx xTtρ
H0(P1

k, TP1
k
)

a′−−−→ TP1
k,t
.

Since a′ is surjective, the image of a contains Im(Ttρ). Since the map (3.6) is surjective, a is
surjective. Hence ρ∗TX is generated by global sections at one point. It is therefore generated
by global sections and ρ is free. �

Corollary 3.5 If X is a smooth projective uniruled variety over a field of characteristic 0,
the plurigenera pm(X) := h0(X,OX(mKX)) vanish for all m > 0, i.e., κ(X) = −∞.

The converse is conjectured to hold and has been proved in dimensions ≤ 3 (for curves,
it is obvious since p1(X) is the genus of X; for surfaces, we have the Castelnuovo criterion:
p12(X) = 0 if and only if X is birationally isomorphic to a ruled surface).

Proof. We may assume that the base field k is algebraically closed. By Proposition 3.4.b),
there is a free rational curve ρ : P1

k → X through a general point of X. Since ρ∗KX has
negative degree, any section of OX(mKX) must vanish on ρ(P1

k), hence on a dense subset of
X, hence on X. �

Example 3.6 Let ρ : P1
k → X be a rational curve on a surface X and let C ⊂ X be its

image. If ρ is free, C “moves” on X by Proposition 3.4.a), hence (C2) ≥ 0. Conversely, if C
is smooth and (C2) ≥ 0, the normal exact sequence

0→ TC → TX |C → OC(C)→ 0

implies that C is free.

Example 3.7 If ε : P̃2
k → P2

k is the blow up of one point, the exceptional curve E is not free

because (E2) = −1. If C ⊂ P̃2
k is any other smooth rational curve, we write C ≡

lin
dε∗H−mE

(Example 1.18). From (C ·E) ≥ 0 (because C 6= E) and (C ·(ε∗H−E)) ≥ 0 (because ε∗H−E
is nef by Example 1.44), we get d ≥ m ≥ 0, hence (C2) = d2 − m2 ≥ 0 and C is free by
Example 3.6.
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Example 3.8 On the blow up X of P2
C at nine general points, there are countably many

rational curves with self-intersection −1 ([H, Exercise V.4.15.(e)]) and none of these curves
are free by Example 3.6. The inverse image on X of a general line of P2

C is free by Example
3.6 again, since its self-intersection is 1.

Exercise 3.9 Let X be a subscheme of PN
k defined by equations of degrees d1, . . . , ds

over an algebraically closed field. Assume d1 + · · · + ds < N . Show that through any
point of X, there is a line contained in X (we say that X is covered by lines and it is in
particular uniruled; in characteristic 0, such a general line is free by Proposition 3.4.b),
but in positive characteristic, it may happen that none of these lines are free).

3.3 Bend-and-break lemmas

In this section, we explain the techniques that Mori invented to prove the conjecture of
Hartshorne mentioned in the introduction to this chapter. The main idea is that if a curve
deforms on a projective variety while passing through a fixed point, it must at some point
break up with at least one rational component, hence the name “bend-and-break.”

We work over an algebraically closed field k.

The first bend-and-break lemma (which we will not prove) can be found in [Mo1,
Theorems 5 and 6]. It says that a curve deforming non-trivially while keeping a point fixed
must break into several pieces, including a rational curve passing through the fixed point.
We introduce one piece of notation: if c is a point of a curve C and x a point of a variety X,
we let Mor(C,X; c 7→ x) be the closed subscheme of Mor(C,X) that parametrizes morphisms
ρ : C → X such that ρ(c) = x. In terms of the evaluation map (3.1), it is defined as

Mor(C,X; c 7→ x) := pr1
(
({c} ×Mor(C,X)) ∩ ev−1(x)

)
. (3.7)

Proposition 3.10 (Mori) Let X be a projective variety defined over an algebraically closed
field, let ρ : C → X be a smooth curve, and let c be a point on C. If dim[ρ] Mor(C,X; c 7→
ρ(c)) ≥ 1, there exists a rational curve on X through ρ(c).

It follows from (3.7) that

dim[ρ] Mor(C,X; c 7→ ρ(c)) ≥ dim[ρ] Mor(C,X)− dim(X).

According to (3.2), when X is smooth along ρ(C), the hypothesis of the proposition is
therefore fulfilled whenever

(−KX · C) ≥ g(C) dim(X) + 1. (3.8)

Once we know there is a rational curve, it may under certain conditions be broken up
into several components. This is the second bend-and-break lemma (which we will not prove
either).
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Proposition 3.11 (Mori) Let X be a projective variety and let ρ : P1
k → X be a rational

curve, birational onto its image C ⊂ X. If

dim[ρ](Mor(P1
k, X; 0 7→ ρ(0),∞ 7→ ρ(∞))) ≥ 2,

the curve C can be deformed to a connected union of at least two rational curves on X still
passing through ρ(0) and ρ(∞).

As above, when X is smooth along f(P1
k), the hypothesis is fulfilled whenever

(−KX ·P1
k) ≥ dim(X) + 2. (3.9)

3.4 Rational curves on Fano varieties

A Fano variety is a smooth projective variety X such that −KX is ample.

Example 3.12 The projective space Pn
k is a Fano variety. More generally, any smooth

complete intersection in Pn
k defined by equations of degrees d1, . . . , ds with d1 + · · ·+ ds ≤ n

is a Fano variety. A finite product of Fano varieties is a Fano variety.

We will apply the bend-and-break lemmas to show that any Fano variety X is covered
by rational curves. Start from any curve ρ : C → X; we want to show, using the estimate
(3.8), that it deforms non-trivially while keeping a point fixed. Since −KX is ample, the
intersection number (−KX · C) is positive. But we need it to be greater than g(C) dim(X).
Composing ρ with a cover C ′ → C of degree m multiplies (−KX ·C) by m, but also (roughly)
multiplies g(C) by m, except in positive characteristic, where the Frobenius morphism allows
us to increase the degree of ρ without changing the genus of C. This gives in that case the
required rational curve on X. Using the second bend-and-break lemma, we can bound the
degree of this curve by a constant depending only on the dimension of X, and this is essential
for the remaining step: reduction of the characteristic zero case to positive characteristic.

We explain this last step in a simple case. Assume for a moment that X and x are
defined over Z ⊂ k; for almost all prime numbers p, the reduction of X modulo p is a Fano
variety of the same dimension hence there is a rational curve (defined over the algebraic
closure of the field Fp) through x. This means that the scheme Mor(P1

k, X; 0 → x), which
is defined over Z, has a geometric point modulo almost all primes p. Since we can moreover
bound the degree of the curve by a constant independent of p, we are in fact in a quasi-
projective subscheme of Mor(P1

k, X; 0 → x), and this implies that it has a point over Q̄,
hence over k. In general, X and x are only defined over some finitely generated ring but
these ideas still work.

Theorem 3.13 (Mori) Let X be a Fano variety of dimension n > 0 defined over an alg-
ebraically closed field. Through any point of X there is a rational curve of (−KX)-degree at
most n+ 1.
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Even over C, there is no known proof of this theorem that uses only transcendental
methods. A consequence of the theorem is that Fano varieties are uniruled (see Section 3.2).
However, some Fano varieties contain no free rational curves ([Ko2]; by Proposition 3.4.b),
this may only happen in positive characteristics).

Proof. Assume that the field k has characteristic p > 0; choose a smooth curve ρ : C → X
through a point x of X and a point c of C such that f(c) = x. Consider the (k-linear)
Frobenius morphism C1 → C;5 it has degree p, but C1 and C being isomorphic as abstract
schemes have the same genus. Iterating the construction, we get a morphism Fm : Cm → C
of degree pm between curves of the same genus which we compose with ρ. Then

(−KX · Cm)− ng(Cm) = −pm(KX · C)− ng(C)

is positive for m large enough. By Proposition 3.10 and (3.8), there exists a (birational)
rational curve ρ′ : P1

k → X, with say ρ′(0) = x. If

(−KX ·P1
k) ≥ n+ 2,

one can, by Proposition 3.11 and (3.8), break up the rational curve ρ′(P1
k) into at least

two (rational) pieces. Since −KX is ample, the component passing through x has smaller
(−KX)-degree, and we can repeat the process as long as (−KX · P1

k) ≥ n + 2, until we get
to a rational curve of (−KX)-degree no more than n+ 1.

This proves the theorem in positive characteristic. Assume now that k has characteris-
tic 0. Embed X in some projective space, where it is defined by a finite set of equations, and
let R be the (finitely generated) subring of k generated by the coefficients of these equations
and the coordinates of x.6 There is a projective scheme X → Spec(R) with an R-point xR,
such that X is obtained from its generic fiber by base change from the quotient field K(R)
of R to k. The geometric generic fiber is a Fano variety of dimension n, defined over the
subfield K(R) of k. There is a dense open subset U of Spec(R) over which X is smooth of
dimension n ([G3, th. 12.2.4.(iii)]). Since ampleness is an open property ([G3, cor. 9.6.4]), we
may even, upon shrinking U , assume that for each maximal ideal m of R in U , the geometric
fiber Xm is a Fano variety of dimension n, defined over R/m.

We will use the following two properties of the finitely generated domain R:7

• for each maximal ideal m of R, the field R/m is finite;

5If F : k→ k is the Frobenius morphism, the k-scheme C1 fits into the Cartesian diagram

C1

��

F //

%%

C

��

Speck
F // Speck.

In other words, C1 is the scheme C, but k acts on OC1 via pth powers.
6This ring was Z in the brief description of the proof before the statement of the theorem.
7The first item is proved as follows. The field R/m is a finitely generated (Z/Z ∩ m)-algebra, hence is

finite over the quotient field of Z/Z∩m by the Nullstellensatz (which says that if k is a field and K a finitely
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• maximal ideals (i.e., closed points) are dense in Spec(R).

As proved in Section 3.1, there is a quasi-projective scheme

ρ : Mor≤n+1(P
1
R,X ; 0 7→ xR)→ Spec(R)

which parametrizes rational curves of degree at most n+ 1 on X through xR.

Let m be a maximal ideal of R. Since the field R/m is finite, hence of positive char-
acteristic, what we just saw implies that the (geometric) fiber of ρ over a closed point of
the dense open subset U of Spec(R) is nonempty; it follows that the image of ρ, which is a
constructible8 subset of Spec(R) by Chevalley’s theorem ([H, Exercise II.3.19]), contains all
closed points of U , therefore is dense by the second item, hence contains the generic point
([H, Exercise II.3.18.(b)]). This implies that the generic fiber is nonempty; it has therefore
a geometric point, which corresponds to a rational curve on X through x, of degree at most
n+ 1, defined over K(R), hence over k.9 �

3.5 Rational curves on varieties whose canonical divi-

sor is not nef

We proved in Theorem 3.13 that when X is a smooth projective variety (defined over an
algebraically closed field) such that −KX is ample (i.e., when X is a Fano variety), there is
a rational curve through any point of X. The theorem we state in this section considerably
weakens the hypothesis: assuming only that KX has negative degree on one curve C, it says
that there is a rational curve through any point of C.

Note that the proof of Theorem 3.13 goes through in positive characteristic under this
weaker hypothesis and does prove the existence of a rational curve through any point of C.
However, to pass to the characteristic 0 case, one needs to bound the degree of this rational
curve with respect to some ample divisor by some “universal” constant so that we deal only

generated k-algebra which is a field, K is a finite extension of k; see [M, Theorem 5.2]). If Z∩m = 0, the field
R/m is a finite dimensional Q-vector space with basis say (e1, . . . , em). If x1, . . . , xr generate the Z-algebra
R/m, there exists an integer q such that qxj belongs to Ze1 ⊕ · · · ⊕ Zem for each j. This implies

Qe1 ⊕ · · · ⊕Qem = R/m ⊂ Z[1/q]e1 ⊕ · · · ⊕ Z[1/q]em,

which is absurd; therefore, Z/Z ∩m is finite and so is R/m.
For the second item, we need to show that the intersection of all maximal ideals of R is {0}. Let a be a

non-zero element of R and let n be a maximal ideal of the localization Ra. The field Ra/n is finite by the
first item hence its subring R/R ∩ n is a finite domain hence a field. Therefore R ∩ n is a maximal ideal of
R which is in the open subset Spec(Ra) of Spec(R) (in other words, a /∈ n).

8A constructible subset is a finite union of locally closed subsets.
9The “universal” bound on the degree of the rational curve is essential for the proof.

For those who know some elementary logic, the statement that there exists a rational curve of (−KX)-
degree at most some constant on a projective Fano variety X is a first-order statement, so Lefschetz principle
tells us that if it is valid on all algebraically closed fields of positive characteristics, it is valid over all
algebraically closed fields.
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with a quasi-projective part of a morphism space. Apart from these technical difficulties,
the ideas are essentially the same as in Theorem 3.13. This theorem is the main result of
[MiM]. We will not prove it.

Theorem 3.14 (Miyaoka-Mori) Let X be a projective variety defined over an algebraic-
ally closed field, let H be an ample divisor on X, and let ρ : C → X be a smooth curve such
that X is smooth along ρ(C) and (KX · C) < 0. Given any point x on ρ(C), there exists a
rational curve Γ on X through x with

(H · Γ) ≤ 2 dim(X)
(H · C)

(−KX · C)
.

When X is smooth, the rational curve can be broken up, using Proposition 3.11 and
(3.9), into several pieces (of lower H-degrees) keeping any two points fixed (one of which
being on ρ(C)), until one gets a rational curve Γ which satisfies (−KX · Γ) ≤ dim(X) + 1 in
addition to the bound on the H-degree.

It is nevertheless useful to have a more general statement allowing X to be singular. It
implies for example that a normal projective variety X with ample (Q-Cartier) anticanonical
divisor is covered by rational curves of (−KX)-degree at most 2 dim(X).

Finally, a simple corollary of this theorem is that the canonical divisor of a smooth
projective complex variety which contains no rational curves is nef.

Our next result generalizes Theorem 3.13 and shows that varieties with nef but not
numerically trivial anticanonical divisor are also covered by rational curves. This class of
varieties is much larger than the class of Fano varieties.

Theorem 3.15 If X is a smooth projective variety with −KX nef,

• either KX is numerically trivial,
• or X is uniruled.

Proof. We may assume that the base field is algebraically closed and uncountable. LetH be
the restriction to X of a hyperplane in some embedding X ⊂ PN

k . Assume (KX ·Hn−1) = 0,
where n := dim(X). For any curve C ⊂ X, there exist hypersurfaces H1, . . . , Hn−1 in
PN

k , of respective degrees d1, . . . , dn−1, such that the scheme-theoretic intersection Z :=
X ∩H1 ∩ · · · ∩Hn−1 has pure dimension 1 and contains C. Since −KX is nef, we have

0 ≤ (−KX · C) ≤ (−KX · Z) = d1 · · · dn−1(−KX ·Hn−1) = 0,

hence KX is numerically trivial and we are in the first case.

Assume now (KX ·Hn−1) < 0. Let x be a point of X and let C be the normalization of
the intersection of n− 1 general hyperplane sections through x. By Bertini’s theorem, C is
an irreducible curve and (KX · C) = (KX ·Hn−1) < 0. By Theorem 3.14, there is a rational
curve on X which passes through x and we are in the second case. �
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An abelian variety has trivial canonical divisor and contains no rational curves.

Exercise 3.16 Let X be a smooth projective variety with −KX big. Show that X is
covered by rational curves.

Exercise 3.17 Let X be a smooth projective variety, let Y ⊂ X be a smooth hyper-
surface, and let C → X be a curve such that (KX ·C) = 0 and (Y ·C) < 0. Prove that
X contains a rational curve.
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Chapter 4

The cone theorem

4.1 Cone of curves

We copy the definition of Weil divisors and define a (real) 1-cycle on a projective scheme
X as a formal linear combination

∑
C tCC, where the C are (embedded, possibly singular)

integral projective curves in X and the tC are real numbers.1 Say that two such 1-cycles C
and C ′ on X are numerically equivalent if

(D · C) = (D · C ′)

for all Cartier divisors D on X. The quotient of the vector space of 1-cycles by this equiv-
alence relation is a real vector space N1(X)R which is canonically dual to NS(X)R, hence
finite-dimensional (Theorem 1.16).

In N1(X)R, we define the convex cone NE(X) of classes of effective 1-cycles and its
closure NE(X). The nef cone Nef(X) ⊂ NS(X)R = N1(X)∨R (defined in (1.7)) is then simply
the dual cone to NE(X) (or to NE(X)). Since the ample cone is the interior of the nef cone
(Corollary 1.47), we obtain, from an elementary general property of dual cones, a useful
characterization of ample classes.

Theorem 4.1 (Kleiman) Let X be a projective variety. A Cartier divisor D on X is
ample if and only if D · z > 0 for all nonzero z in NE(X).

4.2 Mori’s Cone Theorem

We fix the following notation: if D is a divisor on X and S a subset of N1(X)R, we set

SD≥0 = {z ∈ S | D · z ≥ 0}
1To be consistent with our previous definition of “curve on X”, we should perhaps say instead that C is

a smooth projective curve with a morphism C → X which is birational onto its image.
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and similarly for SD≤0, SD>0 and SD<0.

Roughly speaking, Mori’s cone theorem describes, for a smooth projective variety X,
the part of the cone NE(X) which has negative intersection with the canonical class, i.e.,
NE(X)KX<0.

An extremal ray of a closed convex cone V ⊂ Rm is a half-line R≥0x ⊂ V such that

∀v, v′ ∈ V v + v′ ∈ R≥0x =⇒ v, v′ ∈ R≥0x.

If V contains no lines, it is the convex hull of its extremal rays. By Theorem 4.1, this is the
case for the cone NE(X) when X is projective

Theorem 4.2 (Mori’s Cone Theorem) Let X be a smooth projective variety. There ex-
ists a countable family (Γi)i∈I of rational curves on X such that

0 < (−KX · Γi) ≤ dim(X) + 1

and
NE(X) = NE(X)KX≥0 +

∑
i∈I

R≥0[Γi], (4.1)

where the R≥0[Γi] are all the extremal rays of NE(X) that meet N1(X)KX<0; these rays are
locally discrete in that half-space.

An extremal ray that meets N1(X)KX<0 is called KX-negative.

NE(X)

KX > 0KX = 0

KX < 0

0

[Γ1]
[Γ2][Γ3]

[Γ4]

The closed cone of curves

Sketch of proof. It follows from the description (3.4) of the scheme Mor(P1
k, X) that

there are only countably many classes of rational curves on X. Pick a representative Γi for
each such class zi that satisfies 0 < −KX · zi ≤ dim(X) + 1.

First step: the rays R≥0zi are locally discrete in the half-space N1(X)KX<0.

Let H be an ample divisor on X. If zi ∈ N1(X)KX+εH<0, we have (H · Γi) < 1
ε
(−KX ·

Γi) ≤ 1
ε
(dim(X) + 1), and there are only finitely many such classes of curves on X (because

the corresponding curves lie in a quasi-projective part of Mor(P1
k, X)).
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Second step: NE(X) is equal to the closure of V = NE(X)KX≥0 +
∑

i R
≥0zi. If not, there

exists an R-divisor M on X which is non-negative on NE(X) (it is in particular nef), positive
on V r {0} and which vanishes at some non-zero point z of NE(X). This point cannot be
in V , hence KX · z < 0.

Choose a norm on N1(X)R such that ‖[C]‖ ≥ 1 for each irreducible curve C (this is
possible since the set of classes of irreducible curves is discrete). We may assume, upon
replacing M with a multiple, that M · v ≥ 2‖v‖ for all v in V . We have

2 dim(X)(M · z) = 0 < −KX · z.

Since the class [M ] is a limit of classes of ample Q-divisors, and z is a limit of classes of
effective rational 1-cycles, there exist an ample Q-divisor H and an effective 1-cycle Z such
that

2 dim(X)(H · Z) < (−KX · Z) and H · v ≥ ‖v‖ (4.2)

for all v in V . We may further assume, by throwing away the other components, that each
component C of Z satisfies (−KX · C) > 0.

Since the class of every rational curve Γ on X such that (−KX · Γ) ≤ dim(X) + 1
is in V (either it is in NE(X)KX≥0, or (−KX · Γ) > 0 and [Γ] is one of the zi), we have
(H · Γ) ≥ ‖[Γ]‖ ≥ 1 by (4.2) and the choice of the norm. Since X is smooth, the bend-and-
break Theorem 3.14 implies

2 dim(X)
(H · C)

(−KX · C)
≥ 1

for every component C of Z. This contradicts the first inequality in (4.2).

Third step: for any set J of indices, the cone NE(X)KX≥0 +
∑

j∈J R≥0zj is closed. We skip
this relatively easy proof (a formal argument with no geometric content).

If we choose a set I of indices such that (R≥0zj)j∈I is the set of all (distinct) extremal
rays among all R≥0zi, the proof shows that any extremal ray of NE(X)KX<0 is spanned by
a zi, with i ∈ I. This finishes the proof of the cone theorem. �

Corollary 4.3 Let X be a smooth projective variety and let R be a KX-negative extremal
ray. There exists a nef divisor MR on X such that

R = {z ∈ NE(X) |MR · z = 0}.

For any such divisor, mMR −KX is ample for all m� 0.

Any such divisor MR will be called a supporting divisor for R.

Proof. With the notation of the proof of the cone theorem, there exists a (unique) element
i0 of I such that R = R≥0zi0 . By the third step of the proof, the cone

V = VIr {i0} = NE(X)KX≥0 +
∑

i∈I, i 6=i0

R≥0zi
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is closed and is strictly contained in NE(X) since it does not contain R. This implies
that there exists a linear form which is non-negative on NE(X), positive on V r {0} and
which vanishes at some non-zero point of NE(X), hence on R since NE(X) = V + R. The
intersection of the interior of the dual cone V ∗ and the rational hyperplane R⊥ is therefore
nonempty, hence contains an integral point: there exists a divisor MR on X which is positive
on V r {0} and vanishes on R. It is in particular nef and the first statement of the corollary
is proved.

Choose a norm on N1(X)R and let a be the (positive) minimum of MR on the set of
elements of V with norm 1. If b is the maximum of KX on the same compact, the divisor
mMR−KX is positive on V r {0} for m rational greater than b/a, and positive on Rr {0}
for m ≥ 0, hence ample for m > max(b/a, 0) by Kleiman’s criterion (Theorem 4.1). This
finishes the proof of the corollary. �

Exercise 4.4 Let X be a smooth projective variety and let A1, . . . , Ar be ample divisors
on X. Show that KX +A1 + · · ·+Ar is nef for all r ≥ dim(X) + 1.

Exercise 4.5 (A rationality result). Let X be a smooth projective variety whose
canonical divisor is not nef and let M be a nef divisor on X. Set

r := sup{t ∈ R |M + tKX nef}.

a) Show that r is a (finite) non-negative real number.

b) Let (Γi)i∈I be the (nonempty and countable) set of rational curves on X that
appears in the Cone Theorem 4.2. Show

r = inf
i∈I

(M · Γi)
(−KX · Γi)

.

c) Deduce that one can write r = u
v , with u and v relatively prime integers and

0 < v ≤ dim(X) + 1, and that there exists a KX -negative extremal ray R of NE(X)
such that

((M + rKX) ·R) = 0.

4.3 Contractions of KX-negative extremal rays

Let X be a smooth projective variety and let R be an extremal ray of NE(X). A contraction
of R is a fibration cR : X � Y (see Definition 2.18) which contracts exactly those curves in
X whose class is in R. A contraction can only exist when R is generated by the class of a
curve; one can show that the contraction is then unique (up to isomorphisms of the bases).

The fact thatKX-negative extremal rays can be contracted is essential to the realization
of Mori’s minimal model program. This is only known in characteristic 0 (so say over C)
in all dimensions (and in any characteristic for surfaces) as a consequence of the following
powerful theorem, whose proof is beyond the intended scope (and methods) of these notes.
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Theorem 4.6 (Base-point-free theorem (Kawamata)) Let X be a smooth complex pro-
jective variety and let D be a nef divisor on X such that aD −KX is nef and big for some
a ∈ Q>0. Then mD is generated by its global sections for all m� 0.

Corollary 4.7 Let X be a smooth complex projective variety and let R be a KX-negative
extremal ray of NE(X).

a) The contraction cR : X � Y of R exists. It is given by the Stein factorization of the
morphism defined by any sufficiently high multiple of any supporting divisor of R.

b) Let C be any curve on X with class in R. There is an exact sequence

0 −→ Pic(Y )
c∗R−→ Pic(X) −→ Z

[D] 7−→ (D · C)

and ρ(Y ) = ρ(X)− 1.

c) The restriction of −KX to any fiber of cR is ample.

Item b) implies

NS(Y )R
∼−→R⊥ ⊂ NS(X)R and NS(Y )R

∼−→NS(X)R/〈R〉.

Proof of the corollary. Let MR be a supporting divisor for R, as in Corollary 4.3. By
the same corollary and Theorem 4.6, mMR is generated by its global sections for m � 0.
The contraction cR is given by the Stein factorization of the induced morphism X → PN

k .
This proves a). Note for later use that there exists a Cartier divisor Dm on Y such that
mMR ≡

lin
c∗RDm.

For b), we saw in Remark 2.20 that c∗R is injective. Let now D be a divisor on X such
that (D·C) = 0. Proceeding as in the proof of Corollary 4.3, we see that the divisor mMR+D
is nef for all m� 0 and vanishes only on R. It is therefore a supporting divisor for R hence
some multiple m′(mMR +D) also defines its contraction. Since the contraction is unique, it
is cR and there exists a Cartier divisor Em,m′ on Y such that m′(mMR +D) ≡

lin
c∗REm,m′ . We

obtain D ≡
lin
c∗R(Em,m′+1 − Em,m′ −Dm) and this finishes the proof of the corollary.

For c), let F ⊂ X be a fiber of cR and let z ∈ NE(F ) be non-zero. Since z ∈ NE(X)
and mMR −KX is ample for m sufficiently large (Corollary 4.3), we have by Theorem 4.1
(mMR − KX) · z > 0. Since z ∈ NE(F ), we have MR · z = 0, hence (−KX) · z > 0. By
Theorem 4.1, this proves that −KX is ample on F . �

4.4 Various types of contractions

Let X be a smooth complex projective variety and let R be a KX-negative extremal ray,
with contraction cR : X � Y (Corollary 4.7). The curves contracted by cR are exactly those
whose class is in R. Their union locus(R) ⊂ X is called the locus of R.
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Since cR is a fibration, either dim(Y ) < dim(X), or cR is birational (Proposition 2.19).
In the latter case, Zariski’s Main Theorem says that locus(R) = π−1(π(locus(R))), the
fibers of locus(R) → cR(locus(R)) are connected and everywhere positive-dimensional (in
particular, cR(locus(R)) has codimension at least 2 in Y ), and cR induces an isomorphism
X r locus(R) ∼−→Y r cR(locus(R)).

There are 3 cases:

• locus(R) = X, so dim(cR(X)) < dim(X) and cR is a fiber contraction;
• locus(R) is a divisor in X and cR is a divisorial contraction;
• locus(R) has codimension at least 2 in X and cR is a small contraction.

In the case of a divisorial contraction, the locus is always an irreducible divisor. In the
case of a small contraction, the locus may be disconnected.

Proposition 4.8 Let X be a smooth complex projective variety and let R be a KX-negative
extremal ray of NE(X) with contraction cR. Then locus(R) is covered by rational curves
contracted by cR.

Proof. Any point x in locus(R) is on some irreducible curve C whose class is in R. Let
MR be a (nef) supporting divisor for R (as in Corollary 4.3), let H be an ample divisor on
X, and let m be an integer such that

m > 2 dim(X)
(H · C)

(−KX · C)
.

By Proposition 3.14, applied with the ample divisor mMR +H, there exists a rational curve
Γ through x such that

0 < ((mMR +H) · Γ)

≤ 2 dim(X)
((mMR +H) · C)

(−KX · C)

= 2 dim(X)
(H · C)

(−KX · C)
< m.

It follows that the integer (MR ·Γ) must vanish, and (H ·Γ) < m: the class [Γ] is in R hence
Γ is contained in locus(R). This proves the proposition. �

Exercise 4.9 Let X → Pn
k be the blow up of two distinct points. Determine the cone

NE(X) and its extremal rays, and for each extremal ray, describe its contraction (see
Exercise 1.45).

Exercise 4.10 Let X be a smooth projective variety of dimension n over an algebr-
aically closed field of any characteristic. Let R = R≥0z ⊂ NE(X) be a KX -negative
extremal ray and let MR be a supporting divisor for R (Corollary 4.3).
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a) Let C ⊂ X be an irreducible curve such that

(MR · C) <
1

2n
(−KX · C).

Prove that C is contained in locus(R).

b) If (Mn
R) > 0, prove that there exists an integral hypersurface Y ⊂ X such that

Y · z < 0, hence locus(R) 6= X.

c) Show the converse: if locus(R) 6= X, then (Mn
R) > 0.

d) Explain why, in characteristic 0, c) and d) follow from the existence of a
contraction of R (Corollary 4.7).

4.5 Fiber-type contractions

Let X be a smooth complex projective variety and let R be a KX-negative extremal ray with
contraction cR : X � Y of fiber type, i.e., dim(Y ) < dim(X). It follows from Proposition
4.8.a) that X is covered by rational curves (contained in fibers of cR). Moreover, a general
fiber F of cR is smooth and −KF = (−KX)|F is ample (Corollary 4.7.c)): F is a Fano variety
as defined in Section 3.4.

The normal variety Y may be singular, but not too much. Recall that a variety is
locally factorial if its local rings are unique factorization domains. This is equivalent to
saying that all Weil divisors are Cartier divisors.

Proposition 4.11 Let X be a smooth complex projective variety and let R be a KX-negative
extremal ray of NE(X). If the contraction cR : X � Y is of fiber type, Y is locally factorial.

Proof. Let C be an irreducible curve whose class generates R (Theorem 4.2). Let D be
a prime Weil divisor on Y . Let c0R be the restriction of cR to c−1R (Yreg) and let DX be the
closure in X of (c0R)∗(D ∩ Yreg).

The Cartier divisor DX is disjoint from a general fiber of cR hence has intersection 0
with C. By Corollary 4.7.b), there exists a Cartier divisor DY on Y such that DX ≡

lin
c∗RDY .

Since cR∗OX ' OY , by the projection formula, the Weil divisors D and DY are linearly
equivalent on Yreg hence on Y ([H, Proposition II.6.5.(b)]). This proves that D is a Cartier
divisor and Y is locally factorial. �

Example 4.12 (A projective bundle is a fiber contraction) Let E be a locally free
sheaf of rank r ≥ 2 over a smooth projective variety Y and let X = P(E ),2 with projection
π : X → Y . If ξ is the class of the invertible sheaf OX(1), we have

KX = −rξ + π∗(KY + det(E )).

2We follow Grothendieck’s notation: for a locally free sheaf E , the projectivization P(E ) is the space of
hyperplanes in the fibers of E .
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If L is a line contained in a fiber of π, we have (KX · L) = −r. The class [L] spans a
KX-negative ray whose contraction is π.

Example 4.13 (A fiber contraction which is not a projective bundle) Let C be a
smooth curve of genus g, let d be a positive integer, and let Picd(C) be the Jacobian of C
which parametrizes isomorphism classes of invertible sheaves of degree d on C.

Let Cd be the symmetric product of d copies of C; the Abel-Jacobi map πd : Cd →
Picd(C) is a Pd−g-bundle for d ≥ 2g− 1 hence is the contraction of a KCd

-negative extremal
ray by Example 4.12. In general, the fibers of πd are still all projective spaces (of varying
dimensions). If Ld is a line in a fiber, we have

(KCd
· Ld) = g − d− 1.

Indeed, the formula holds for d ≥ 2g − 1 by 4.12. Assume it holds for d; use a point of C to
get an embedding ι : Cd−1 → Cd. Then (ι∗Cd−1 · Ld) = 1 and the adjunction formula yields

(KCd−1
· Ld−1) = (ι∗(KCd

+ Cd−1) · Ld−1)
= ((KCd

+ Cd−1) · ι∗Ld−1)
= ((KCd

+ Cd−1) · Ld),
= (g − d− 1) + 1,

which proves the formula by descending induction on d.

It follows that for d ≥ g, the (surjective) map πd is the contraction of the KCd
-negative

extremal ray R≥0[Ld]. It is a fiber contraction for d > g. For d = g + 1, the generic fiber is
P1

k, but there are larger-dimensional fibers when g ≥ 3, so the contraction is not a projective
bundle.

4.6 Divisorial contractions

Let X be a smooth complex projective variety and let R be a KX-negative extremal ray
whose contraction cR : X � Y is divisorial. It follows from Proposition 4.8.b) and its proof
that the locus of R is an irreducible divisor E such that E · z < 0 for all z ∈ Rr {0}.

Again, Y may be singular (see Example 4.18), but not too much. We say that a scheme
is locally Q-factorial if any Weil divisor has a non-zero multiple which is a Cartier divisor.
One can still intersect any Weil divisor D with a curve C on such a variety: choose a positive
integer m such that mD is a Cartier divisor and set

(D · C) =
1

m
deg OC(mD).

This number is however only rational in general.
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Proposition 4.14 Let X be a smooth complex projective variety and let R be a KX-negative
extremal ray of NE(X). If the contraction cR : X � Y is divisorial, Y is locally Q-factorial.

Proof. Let C be an irreducible curve whose class generates R (Theorem 4.2). Let D be a
prime Weil divisor on Y . Let c0R : c−1R (Yreg) → Yreg be the morphism induced by cR and let
DX be the closure in X of c0∗R (D ∩ Yreg).

Let E be the locus of R. Since (E · C) 6= 0, there exist integers a 6= 0 and b such that
aDX + bE has intersection 0 with C. By Corollary 4.7.b), there exists a Cartier divisor DY

on Y such that aDX + bE ≡
lin
c∗RDY .

Lemma 4.15 Let X and Y be varieties, with Y normal, and let π : X → Y be a proper
birational morphism. Let F an effective Cartier divisor on X whose support is contained in
the exceptional locus of π. We have

π∗OX(F ) ' OY .

Proof. Since this is a statement which is local on Y , it is enough to prove H0(Y,OY ) '
H0(Y, π∗OX(F )) when Y is affine. By Zariski’s Main Theorem, we have H0(Y,OY ) '
H0(Y, π∗OX) ' H0(X,OX), hence

H0(Y,OY ) ' H0(X,OX) ⊂ H0(X,OX(F )) ⊂ H0(X r E,OX(F ))

and
H0(X r E,OX(F )) ' H0(X r E,OX) ' H0(Y r π(E),OY ) ' H0(Y,OY ),

the last isomorphism holding because Y is normal and π(E) has codimension at least 2 in
Y ([H, Exercise III.3.5]). All these spaces are therefore isomorphic, hence the lemma. �

Using the lemma, we get

OYreg(DY ) ' c0R∗Oc−1
R (Yreg)

(aDX + bE) ' OYreg(aD)⊗ c0R∗OX0(bE) ' OYreg(aD),

hence the Weil divisors aD and DY are linearly equivalent on Y . It follows that Y is locally
Q-factorial. �

Example 4.16 (A smooth blow up is a divisorial contraction) Let Y be a smooth
projective variety, let Z be a smooth subvariety of Y of codimension c, and let π : X → Y
be the blow up of Z, with exceptional divisor E. We have ([H, Exercise II.8.5.(b)])

KX = π∗KY + (c− 1)E.

Any fiber F of E → Z is isomorphic to Pc−1 and OF (E) is isomorphic to OF (−1). If L is a
line contained in F , we have (KX ·L) = −(c−1); the class [L] therefore spans a KX-negative
ray whose contraction is π.
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Example 4.17 (A divisorial contraction which is not a smooth blow up) We keep
the notation of Example 4.13. The (surjective) map πg : Cg � Picg(C) is the contraction of
the KCg -negative extremal ray R≥0[Lg]. Its locus is, by Riemann–Roch, the divisor

{D ∈ Cg | h0(C,KC −D) > 0}

and its image in Picg(C) has dimension g − 2. The general fiber over this image is P1
k, but

there are bigger fibers when g ≥ 6, because the curve C has a g1g−2, and the contraction is
not a smooth blow up.

Example 4.18 (A divisorial contraction with singular image) Let Z be a smooth
projective threefold and let C be an irreducible curve in Z whose only singularity is a node.
The blow up Y of Z along C is normal and its only singularity is an ordinary double point
q. This is checked by a local calculation: locally analytically, the ideal of C is generated by
xy and z, where x, y, z form a system of parameters. The blow up is

{((x, y, z), [u, v]) ∈ A3
k ×P1

k | xyv = zu}.

It is smooth except at the point q = ((0, 0, 0), [0, 1]). The exceptional divisor is the P1
k-bundle

over C with local equations xy = z = 0.

The blow up π : X → Y at q is smooth. It contains the proper transform E of the
exceptional divisor of Y and an exceptional divisor Q, which is a smooth quadric. The
intersection E ∩Q is the union of two lines L1 and L2 belonging to the two different rulings
of Q. Let Ẽ → E and C̃ → C be the normalizations; each fiber of Ẽ → C̃ is a smooth
rational curve, except over the two preimages p1 and p2 of the node of C, where it is the
union of two rational curves meeting transversally. Over pi, one of these curves maps to Li,
the other one to the same rational curve L. It follows that L1 + L and L2 + L, hence also
L1 and L2, are numerically equivalent on X; they have the same class `.

Any curve contracted by π is contained in Q hence its class is a multiple of `. A local
calculation shows that OQ(KX) is of type (−1,−1), hence KX · ` = −1. The ray R≥0` is
KX-negative and its (divisorial) contraction is π (hence R≥0` is extremal).3

Exercise 4.19 Let X be a smooth complex projective Fano variety with Picard number
≥ 2. Assume that X has an extremal ray whose contraction X → Y maps a hypersur-
face E ⊂ X to a point. Show that X also has an extremal contraction whose fibers are
all of dimension ≤ 1 (Hint: consider a ray R such that (E ·R) > 0.)

4.7 Small contractions and flips

Let X be a smooth complex projective variety and let R be a KX-negative extremal ray
whose contraction cR : X � Y is small.

3This situation is very subtle: although the completion of the local ring OY,q is not factorial (it is
isomorphic to k[[x, y, z, u]]/(xy−zu), and the equality xy = zu is a decomposition in a product of irreducibles
in two different ways) the fact that L1 is numerically equivalent to L2 implies that the ring OY,q is factorial
(see [Mo2, (3.31)]).
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The following proposition shows that Y is very singular: it is not even locally Q-
factorial, which means that one cannot intersect Weil divisors and curves on Y .

Proposition 4.20 Let Y be a normal and locally Q-factorial variety and let π : X → Y be
a birational proper morphism. Every irreducible component of the exceptional locus of π has
codimension 1 in X.

Proof. Let E be the exceptional locus of π and let x ∈ E and y = π(x); identify the
quotient fields K(Y ) and K(X) by the isomorphism π∗, so that OY,y ( OX,x ⊂ K(X). Since
OY,y/mY,y ' OX,x/mX,x ' k (because k is algebraically closed and x and y are closed points),
there exists t ∈ mX,xrOY,y. Since t ∈ K(Y ), we may write its divisor on Y as the difference
of two effective (Weil) divisors D′ and D′′ without common components.

Since Y is locally Q-factorial, there exists a positive integer m such that mD′ and
mD′′ are Cartier divisors, hence define elements u and v of OY,y such that tm = u

v
. Both are

actually in mY,y: v because tm is not in OY,y (otherwise, t would be since OY,y is integrally
closed), and u = tmv because it is in mX,x∩OY,y = mY,y. But u = v = 0 defines a subscheme
Z of Y containing y of codimension 2 in some neighborhood of y (it is the intersection of the
codimension 1 subschemes mD′ and mD′′), whereas π−1(Z) is defined by tmv = v = 0 hence
by the sole equation v = 0: it has codimension 1 in X, hence is contained in E. It follows
that there is a codimension 1 component of E through every point of E, which proves the
proposition. �

Since it is impossible to do anything useful with Y , Mori’s idea is that there should exist
instead another (mildly singular) projective variety X+ with a small contraction c+ : X+ →
Y such that KX+ has positive degree on curves contracted by c+. The map c+ (or sometimes
the resulting rational map (c+)−1 ◦ c : X 99K X+) is called a flip.

Definition 4.21 Let c : X � Y be a small contraction between normal projective varieties.
Assume that KX is Q-Cartier and −KX is ample on all fibers of c. A flip of c is a small
contraction c+ : X+ → Y such that

• X+ is a projective normal variety;
• KX+ is Q-Cartier and ample on all fibers of c+.

The existence of a flip of the small contraction of a negative extremal ray has only been
shown recently ([BCHM]; see also [Dr, cor. 2.5]).

Proposition 4.22 Let X be a locally Q-factorial complex projective variety and let c : X �
Y be a small contraction of a KX-negative extremal ray R. If the flip X+ � Y exists, the
variety X+ is locally Q-factorial with Picard number ρ(X).

Proof. The composition ϕ = c−1 ◦ c+ : X+ 99K X is an isomorphism in codimension 1,
hence induces an isomorphism between the Weil divisor class groups of the normal varieties
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X and X+ ([H, Proposition II.6.5.(b)]). Let D+ be a Weil divisor on X+ and let D be the
corresponding Weil divisor on X. Let C be an irreducible curve whose class generates R, let
r be a rational number such that ((D + rKX) · C) = 0, and let m be an integer such that
mD, mrKX , and mrKX+ are Cartier divisors (the fact that KX+ is Q-Cartier is part of the
definition of a flip!). By Corollary 4.7.b), there exists a Cartier divisor DY on Y such that
m(D + rKX) ≡

lin
c∗DY , and

mD+ = ϕ∗(mD) ≡
lin

(c+)∗DY − ϕ∗(mrKX) ≡
lin

(c+)∗DY −mrKX+

is a Cartier divisor. This proves that X+ is locally Q-factorial. Moreover, ϕ∗ induces an
isomorphism between N1(X)R and N1(X+)R, hence the Picard numbers are the same. �

Contrary to the case of a divisorial contraction, the Picard number stays the same after
a flip. So the second main problem is the termination of flips: can there exist an infinite
chain of flips? It is conjectured that the answer is negative, but this is still unknown in
general.

Exercise 4.23 Let V be a k-vector space of dimension n and let r ∈ {1, . . . , n−1}. Let
Gr(r, V ) be the Grassmannian that parametrizes vector subspaces of V of codimension
r and set

X := {(W, [u]) ∈ Gr(r, V )×P(End(V )) | u(W ) = 0}.

a) Show thatX is smooth irreducible of dimension r(2n−r)−1, that Pic(X) ' Z2,
and that the projection pr1 : X → Gr(r, V ) is a KX -negative extremal contraction.

b) Show that

Y := pr2(X) = {[u] ∈ P(End(V )) | rank(u) ≤ r}

is irreducible of dimension r(2n− r)− 1. It can be proved that Y is normal. If r ≥ 2,
show that Y is not locally Q-factorial and that Pic(Y ) ' Z[OY (1)]. What happens
when r = 1?

4.8 The minimal model program

Given a projective variety X defined over an algebraically closed field k, one may try to find
another projective variety birationally isomorphic to X and which is “as simple as possible.”
More formally, we define, on the set CX of all (isomorphism classes of) projective varieties
birationally isomorphic to X, a relation as follows: if X0 and X1 are in CX , we write X0 � X1

if there is a birational morphism X0 → X1. This defines an ordering on CX and we look for
minimal elements in CX or even, if we are optimisitic, for the smallest element of CX .

When X is a smooth surface, it has a smooth minimal model obtained by contracting
all exceptional curves on X. If X is not uniruled, this minimal model has nef canonical
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divisor and is the smallest element in CX . When X is uniruled, this minimal model is not
unique, and is either a ruled surface or P2

k.

The next proposition (which we will not prove) shows that smooth projective varieties
with nef canonical bundles are minimal in the above sense. They are called minimal models.

Proposition 4.24 Let X and Y be smooth projective varieties and let π : X → Y be a
birational morphism which is not an isomorphism. There exists a rational curve C on X
contracted by π such that (KX · C) < 0.

In particular, if KX is nef, X is a minimal element in CX .

A few warnings about minimal models:

• uniruled varieties do not have minimal models, since they carry free curves, on which
the canonical class has negative degree;
• there exist smooth projective varieties which are not uniruled but which are not bira-

tional to any smooth projective variety with nef canonical bundle;4

• in dimension at least 3, minimal models may not be unique, although any two are
isomorphic in codimension 1 ([D1, 7.18]).

Starting from X, Mori’s idea is to try to simplify X by contracting KX-negative ex-
tremal rays, hoping to end up with a variety X0 which either has a fiber contraction (in which
case X0, hence also X, is covered by rational curves (see Section 4.5)) or has nef canonical
divisor (hence no KX0-negative extremal rays). However, three main problems arise.

• The end-product of a contraction is usually singular. This means that to continue
Mori’s program, we must allow singularities. This is very bad from our point of view,
since most of our methods do not work on singular varieties. Completely different
methods are required.
• One must determine what kind of singularities must be allowed. Whichever choices

we make, the singularities of the target of a small contraction are too severe and one
needs to perform a flip. So we have the problem of existence of flips.
• One needs to know that the process terminates. The Picard number decreases for a

fiber or divisorial contraction, but not for a flip! So we have the additional problem of
termination of flips: do there exist infinite sequences of flips?

The first two problems have been overcome: the first one by the introduction of cohomological
methods to prove the cone theorem on (mildly) singular varieties, the second one more
recently in [BCHM] (see [Dr, cor. 2.5]). The third point is still open in full generality (see
however [Dr, cor. 2.8]).

4This is the case for any desingularization of the quotient X of an abelian variety of dimension 3 by the
involution x 7→ −x ([U, 16.17]); a minimal model here is X itself, but it is singular.
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